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SPECIAL ISSUE: Optical Gain Materials towards Enhanced Light-Matter Interactions

Optical property and lasing of GaAs-based nanowires
Haolin Li1,2†, Yuting Chen2†, Zhipeng Wei1* and Rui Chen2*

ABSTRACT GaAs-based nanowire (NW) lasers working in
the infrared region is critical in integrated optoelectronics. In
the past few decades, the field of NW lasers has developed
rapidly. Compared with materials working in the ultraviolet
and visible ranges, GaAs-based infrared NW lasers, however,
are more difficult to achieve because of their specific proper-
ties. In this review, we focus on the recent developments of
GaAs-based NWs, more especially, the optical property and
lasing of GaAs-based NWs. The growth mechanism of GaAs
NWs is introduced in detail, including the crystal phase con-
trol and the growth of complex structures. Subsequently, the
influence and improvement of the optical properties of GaAs-
based NWs are introduced and discussed. Finally, the design
and latest progress of GaAs-based NW lasers are put forward.

Keywords: GaAs-based nanowires, quantum well, infrared, op-
tical property, lasing

INTRODUCTION
With the development of artificial intelligence technology
and the advent of the era of big data, humanity’s demand
for information is growing. Conventional information
technologies are currently reaching their limits due to
high latency and huge power consumption. Photons with
faster transmission speeds and stronger anti-interference
abilities will become the ideal information carrier for
next-generation technology. The development of a pho-
tonic integrated circuit (PIC) will lead to the revolution of
information technology [1]. As one of the most important
devices in PIC, lasers have been widely investigated [2],
especially for the GaAs-based lasers working at commu-
nication wavelengths [3]. The main focus of current laser
research is their miniaturization and silicon-based in-
tegration to satisfy PIC development. Thanks to the
quantum confinement effect, one-dimensional (1D)

semiconductor nanowires (NWs) possess promising
electronic and optical properties. High-quality NWs have
a naturally smooth reflective surface that does not require
further grinding and polishing. Their unique structure
and high refractive index facilitate the propagation of
photons inside the NWs to realize the light resonance, for
example, the Fabry-Pérot (F-P) cavity defined by the NW
end facets. Most importantly, due to non-planar 1D
growth, the defects caused by lattice mismatches do not
extend into the NW body, so the selectivity of NW
growth to the substrate is not limited by the lattice mis-
match. In other words, NWs show great advantages in
silicon-based integration.

In 2001, the first demonstration of NW lasing was
realized by using ZnO NWs [4], which opened a new era
of NW lasers. The whole new field of NW lasers attracted
attention from various research communities. NW laser
materials have sprung up, including metal oxides, II-VI,
and III-V semiconductor alloys, which cover the lasing
wavelength from 370 to 2200 nm. Semiconductor mate-
rials with large bandgaps can be used in ultraviolet (UV)
range, such as ZnO [4] and GaN [5]. Due to the large
exciton binding energy and high optical gain, they do not
need a long cavity to realize lasing. The first NW laser,
therefore, was made of ZnO material. For lasers working
in the visible range, the representative materials are CdS
[6] and ZnSe [7], which show a great application in the
field of lighting, imaging, and display. Infrared NW laser
materials working in the communication range include
GaAs [8–10], GaSb [11], and InP [12]. Among these re-
ported infrared laser materials, GaAs has been widely
considered because of its preparation convenience, direct
bandgap, high gain value, and excellent bandgap tun-
ability by changing the composition of GaAs-based alloys.
The development of infrared lasing, however, is much
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more challenging compared with UV and visible NW
lasers. As shown in the normalized modal dispersion
relationship [13], NW lasers working in the infrared
wavelength should be larger for effective waveguiding.
Moreover, there will be more nonradiative recombination
centers in narrow bandgap materials such as surface
states and serious Auger recombination [8,10,11]. Last,
the exciton binding energy of a narrow bandgap semi-
conductor is, in general, small. For example, GaAs has an
exciton binding energy of only around 5 meV, which is
much smaller than the thermal energy at room tem-
perature (25 meV at 300 K). Efficient radiative re-
combination in GaAs-based materials, therefore, requires
excellent crystal quality, high emission efficiency, and
efficient structural design.

In the past few decades, tremendous amount of pro-
gresses have been made in the field of GaAs-based NW
lasing. The growth mechanism of GaAs NWs has been
investigated, and GaAs NWs with excellent crystal quality
have been obtained. The optical properties of GaAs NWs
have been extensively studied. Many methods toward
optical property improvement have been proposed, and
optical pumped lasing at room temperature has been
realized [8,9]. Complex NW structures have emerged, and
the regulation of laser properties of NWs has greatly
developed. In this review, we focus on the recent devel-
opments of GaAs-based NWs, especially, the optical
property and lasing of GaAs-based NWs. We begin with
reviewing the advances in growth and a basic under-
standing of GaAs-based NW growth mechanisms. In
particular, the vapor-liquid-solid (VLS) mechanism
makes it possible to grow and regulate NWs with complex
structures, such as coaxial quantum well (QW) NWs and
dot-in-rod NWs. Then the optical properties of GaAs-
based NWs are discussed, including methods which can
improve the optical gain of the materials, such as doping
and passivation. We subsequently discuss various struc-
tural designs for NW lasers. Finally, challenges and out-
looks toward high-performance GaAs-based NW lasers
have been provided. Other fundamentals can be found in
some previous good reviews [1,14–26].

GaAs-BASED NW GROWTH
To achieve lasing from GaAs-based NWs, high crystal
quality and complex structures are of great significance.
In the past decades, researchers started to gradually un-
derstand the growth mechanism of 1D NWs, and NWs
with a new structure were designed and fabricated.
Growing GaAs-based NWs with well-defined crystal
structures is a challenging task, but critical for device

applications. This section will focus on the growth of
NWs. We will briefly explain the growth mechanism and
morphology control. We also discuss the phase control of
NWs, the growth of doped NWs, and the complex QW
structure of NWs [21,27–29].

GaAs NW growth and crystal phase control
Over the past few decades, the overall strategy for
achieving GaAs-based NWs has not changed sig-
nificantly. As for atomic-level epitaxy, metal-organic va-
por phase epitaxy, and molecular beam epitaxy
technologies are the main methods to grow GaAs NWs.
Among them, the VLS growth mechanism was con-
sidered as the main method to grow the 1D semi-
conductor NWs [22] and was proposed by Wagner and
Ellis [30] during the growth of Si whiskers in 1964. The
VLS NW growth contains three distinct steps: alloying,
nucleation, and growth. For GaAs-based NWs, the first
step is the formation of catalyst droplets on a substrate. A
certain proportion of the growth source gases then are
passed into the growth chamber. Under appropriate
growth temperature, gases nucleate in droplets and pre-
cipitate crystals along the growth direction to form NWs,
as shown in Fig. 1a. Three conditions during the VLS
growth show a significant influence on the properties of
NWs: the catalyst, the source ratio, and temperature.
Interestingly, Rudolph et al. [31] realized a droplet-free
growth of GaAs NWs in a group V elements rich en-
vironment. But in this non-VLS growth mode, the NWs
have a slow vertical growth rate. The catalyst is usually
formed by droplets of Au or group III elements [32]. The
pseudo-binary phase diagram of Au-GaAs shows that Au-
GaAs liquid and GaAs solid are the principle phases
above 630°C in the GaAs rich region. That is, Au could
serve as a VLS catalyst in this region, according to the
phase diagram [33]. Like every coin has two sides, using
the Au catalyst will affect the optical properties of NWs.
For example, NWs grown by an Au catalyst will form an
Au particle on the top termination surface. Thanks to the
ultralow refractive index of Au, it can achieve efficient
end-face reflection, which is beneficial for light confine-
ment [8]. Some researchers, however, found that the in-
corporation of Au during the VLS NW growth might be
responsible for the limited performance of NW-based
devices. Breuer and co-workers [34] compared the optical
properties of gold-catalyzed and self-catalyzed GaAs NWs
by time-resolved photoluminescence (TRPL) and tem-
perature-dependent PL spectroscopy. The experimental
results show that the PL lifetime of self-catalytic NWs is
longer (~2.5 ns) while that of the Au-catalyzed NWs is
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~9 ps, and the temperature stability of the material is
better. Moreover, Au-catalyzed NWs do not adapt to Si-
based integration.

When GaAs-based semiconductor materials are epi-
taxially grown in the form of NWs, metastable wurtzite
(WZ) phases usually exist, while GaAs-based thin-film
materials, in general, only exist in the stable zinc-blende
(ZB) phase. Fig. 1b and c show the high-resolution
transmission electron microscopy (HRTEM) images of
the mixed phases in the NWs and the arrangement of the
atoms [35]. Up to now, the growth of pure-phase GaAs-
based NWs is still challenging. Nucleation at the triple-
phase line (TPL) is used to address the experimentally
observed formation of the WZ phase, as proposed by Glas
et al. [36]. A nucleation-based model was proposed to
describe the surface energy and formation energy. As is
shown in this study, the higher cohesive energy of the WZ
phase could be compensated by the lower surface energy
during nucleation at the TPL.

Since then, the nucleation theory of NW growth has
been further developed to include additional features
such as the changes of the particle surface area [37],
Kashchiev renormalization [38], poly-nucleation [39],
droplet morphology [40,41], and droplet depletion [42].
Recently, Mårtensson and co-workers [43] presented a

model to simulate the growth and crystal structure of
GaAs NW, and their results match the experimental data.
According to these theories, the flow of the group V
precursor can control the crystal structure. In general, a
high flow of an As precursor leads to the growth of the ZB
phase, while lowering the As flow leads to WZ formation
[44]. In 2010, Joyce et al. [45] demonstrated the phase-
perfect Au-catalyzed NWs by tailoring the temperature
and group V:III ratio. Meanwhile, Krogstrup’s group
grew Au-free GaAs NWs in the ZB phase by controlling
the temperature and V:III ratio [46]. Kim and co-workers
[47] grew nanoneedles in the pure WZ phase on top of
NWs by controlling the V:III ratio and proved that the
formation of WZ phase nanoneedles is related to the
droplet contact angle. In 2019, Maliakkal and co-workers
[48] used an in situ electron microscope and X-ray energy
dispersive spectroscopy to measure the catalyst compo-
sition during NW growth. They studied the growth of
Au-seeded GaAs NWs and found that the Ga content in
the catalyst during growth increased with both tempera-
ture and Ga precursor flux. In the same year, the team of
Schroth reported the impact of the shadowing effect on
the crystal structure of patterned self-catalyzed GaAs
NWs by using the simultaneous in situ X-ray investiga-
tion [49]. Their results indicated that the effective V:III

Figure 1 GaAs-based NW growth. (a) Scheme of the VLS growth mechanism. (b) HRTEM image of WZ/ZB mixed phase structure. (c) Atomic
arrangement and band gap of WZ/ZB structure in same GaAs NWs. Reproduced with permission from [35]. Copyright 2009, American Physical
Society. (d) Probe-like GaAs NWs formed by controlling droplet (scale bar: 1 μm). Reproduced with permission from [47]. Copyright 2017, American
Chemical Society. (e) Coaxial GaAs/AlGaAs core-multi-shell QW NW. Reproduced with permission from [65]. Copyright 2016, AIP Publishing. (f)
Dot-in-rod AlGaAs/GaAs axial QW NW (scale bars: 50 nm). Reproduced with permission from [88]. Copyright 2015, Springer Nature.
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ratio could be adjusted by controlling the shadow effect
brought by the spacing of NWs, thereby achieving ef-
fective phase control of NWs. Furthermore, phase control
can also be performed by growing heterostructures and
taking advantage of the strain induced by the lattice
mismatch between different materials [50,51]. Moreover,
the growth of pure-phase nanowires can also be achieved
by doping, which will be discussed in the subsequent
doping section.

The diameter and length of the NWs are related to the
growth time, the growth temperature, and the V:III ratio.
During the growth of NWs, the reactants involved in the
growth originate from the direct impact and thermal
migration along the sidewall, as indicated in Fig. 1a. Re-
action species that impinge directly on the droplet con-
tribute to the axial growth. Moreover, Ga adatoms
adsorbed on the substrate and sidewalls will diffuse along
the concentration gradient toward the droplet. These
diffusing adatoms contribute to both radial and axial
growths, and therefore, there is a competition between
axial VLS growth and sidewall vapor-solid growth. At a
lower temperature, the diffusing adatoms are less likely to
be incorporated into NW sidewalls to limit the radial
growth. Furthermore, the diffusion length of adatoms
decreases with decreasing growth temperature [52]. This
also explains the formation of probe-like NWs [47], as
shown in Fig 1d.

Doping in GaAs NWs
Doping in GaAs NWs was first studied three decades ago
[53], and research in this field has expanded rapidly in
recent years. The main part of doping studies currently
exists for Au or Ga seeded GaAs NWs [54–59]. The most
commonly used n-type dopants are Te [55,57,60] and Si
[61–63], while the most commonly used p-type dopants
are Be [55,58,59,64], C [61], and Zn [54,56,57]. During
the doped NW growth, the decomposition and diffusion
of different growth species in the vapor phase on the
surface of the NW and in the catalytic particles will affect
the homogeneity of carrier concentration, material com-
position, and doping profile abruptness. Interestingly, it
has been found that Be could be preferentially in-
corporated into certain facets underneath the seed par-
ticle during the NW growth [59]. This property can also
be used for the crystal phase control of GaAs NWs. Be
atoms accumulate inside the Ga droplets, leading to the
change of the Ga droplet properties and causing the
growth of pure-phase ZB NWs [58]. Due to the differ-
ences in incorporation paths for lateral and axial growths,
the doping of NWs is usually accompanied by uneven or

insufficient doping and crystal structure defects. An in-
teresting approach to achieve doping while maintaining a
high material quality is to employ modulation-doped
core-shell structures [60–62]. The core-shell p-n junction
allows the realization of electrically pumped lasers.

GaAs-based QW NW growth
In general, as the size decreases, NWs will exhibit better
strain tolerance than bulk materials. Strain caused by
lattice mismatch in the QW structure, therefore, can be
better released. Due to the 1D structure of NWs, QW in
NWs can be constructed in two ways, namely, the core-
shell structure that forms a QW in the radial direction
(Fig. 1e) [65–79], and the dot-in-rod structure that forms
a QW in the axial direction (Fig. 1f) [80–88]. The dif-
ference between the axial and radial growths of QW NWs
is the depletion of the droplets.

The method of radial QW NW growth is similar to the
growth of core-shell NWs. The shell starts to grow im-
mediately when the growth of the core is completed.
During the growth of the shell, the axial growth of the
NWs must be suppressed by controlling the temperature
and equivalent beam ratio [78]. The growth time can
obtain the axial QW NWs with different well thicknesses.
When growing GaAs/GaAsSb QW NWs, we found that
droplets can also control the morphology of core-shell
NWs. If the Ga-catalyzed droplets on the top of the NWs
are not completely consumed before the GaAsSb shell
grows, a probe-like core-shell NW will appear [75]. This
is related to the competition between the axial and radial
growth, as mentioned above. The alloy composition in
QW is related to equivalent beam ratios during the
growth. The spontaneous alloy composition adjustment,
however, also occurs during radial QW NW growth.
Heiss et al. [89] presented a versatile quantum-dot-in-rod
system that reproducibly self-assembles in GaAs/AlGaAs
QW NW systems. This phenomenon was also reported in
GaAs-based NWs with a core-shell structure [78,90]. The
occurrence of the spontaneous alloy composition can be
understood because of the capillarity induced by the
nonplanarity of the underlying substrate, which com-
pensates for a given growth rate anisotropy among dif-
ferent crystal facets [78,91].

For axial QW NW, in 2002, Gudiksen et al. [80] used a
laser-assisted catalytic method to grow GaAs/GaP su-
perlattices in single NWs by modulating the reactants.
Since then, much research was conducted to discuss the
growth of quantum dots in NWs by using the VLS
methods [84,85,89,92,93]. The most important thing
during the growth of axial QW in NW is to maintain the
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droplet when switching the sources. In 2014, Tatebayashi
et al. [82] obtained highly uniformed, multi-stacked In-
GaAs/GaAs quantum dots embedded in GaAs NWs by
accurate design. In the following year, they demonstrated
room-temperature lasing from single NWs containing 50
of such stacked quantum dots. This was achieved by
tailoring the emission energies of each quantum dot in
the NW for enhanced optical gain [88]. In 2018, Ren et al.
[86] grew the axial QW with a much more complex
structure. Each NW contains six GaAsSb-based multiple
superlattices, consisting of ten GaAsSb-rich inserts, which
served as the gain medium.

OPTICAL PROPERTY OF GaAs-BASED
NWs
This section introduces the optical properties of GaAs
NWs. As a direct bandgap semiconductor, GaAs mate-
rials have extensively widespread optical application po-
tential. There, however, are still some problems with
GaAs-based NWs that limit the application in NW lasers
such as serious surface nonradiative recombination and
lower exciton binding energy. We reviewed several
methods that improve the optical properties of GaAs-
based NWs such as passivation, doping, and QW struc-
tures.

Optical properties of GaAs NWs
GaAs has a direct bandgap of about 1.426 eV (the wa-
velength is about 870 nm) at room temperature (300 K)
[94]. The direct and small bandgap of GaAs makes it
important for near-infrared optical applications. The ex-
citon binding energy of GaAs, however, is only about
5 meV [17,94], which is far smaller than the room-tem-
perature thermal energy (25 meV at 300 K), limiting its
application at high temperatures.

As mentioned above, bulk GaAs only shows ZB struc-
ture. However, when the dimension reduces, a metastable
WZ structure exists. The alternate appearance of two
crystalline phases in the same NW will form a type-II QW
structure due to different band edges, as illustrated in
Fig. 1c. In 2009, Spirkoska et al. [35] synthesized GaAs
ZB/WZ heterostructure NWs with different average
crystal phase ratios. They found that the emission peaks
located at different positions, as illustrated in Fig. 2a, are
attributed to the different quantum confinement effects
related to the QW thicknesses. In 2013, Graham et al. [95]
investigated the temperature-dependent optical proper-
ties of excitons in GaAs NWs containing ZB/WZ het-
erostructures. The S-shaped temperature dependence
indicates exciton redistribution among states within the

polytypic wires. Due to the lower quantum efficiency of
the type-II structure, GaAs NWs with high crystal quality
and pure phases are needed to achieve NW lasing.

Optical properties of doped GaAs NWs
Doping is known as an effective method that can mod-
ulate the optical and electrical properties of semi-
conductors. In 2013, Sager et al. [57] investigated the
recombination dynamics in single GaAs NWs with an
axial p-n heterojunction by PL and TRPL. The results
showed that the Sn-doping (n-type) has a stronger
emission intensity and longer PL lifetime than the Zn-
doped (p-type) NWs, as indicated in Fig. 2b. The en-
hanced optical property in the n-doped region is related
to the Fermi-level pining at the doped GaAs surface,
causing the band bending at the surface and decreasing
the surface-related nonradiative recombination. A similar
phenomenon was also reported in shelled Si-doped (n-
type) GaAs NWs by Boland et al. [61], which exhibited
longer photocurrent lifetimes. The photocurrent lifetimes
of C-doped (p-type) NWs, however, decrease faster at the
beginning because of the diffusion of photogenerated
electrons toward the defective surface. Then, because of
the limitation of the holes caused by the band bending,
the attenuation of the optical conductivity slows down. In
2016, Burgess and co-workers [56] employed Zn dopant
to increase the radiative recombination rate. A radical
increase in radiative efficiency demonstrates room-tem-
perature lasing in doped GaAs NWs without passivation.
Recently, they reported the influence of p-type doping on
the optical properties of NWs based on a large-scale
optical technique [54]. The results show that the optimal
doping level is about 1.2 × 1019 cm−3. Above this value,
nonradiative recombination via the Auger mechanism
begins to dominate.

Optical properties of passivated GaAs NWs
GaAs semiconductor NWs suffer from serious surface
defects due to their large surface-to-volume ratio. Bare
GaAs NWs usually possess a low radiative efficiency and,
therefore, are not considered for optical applications
[96,97]. In recent decades, many procedures on GaAs
surface passivation have been studied. Among these
procedures, chemical passivation and core-shell structure
are the two popular effective passivation methods.

The chemical passivation method has been widely used
for GaAs thin films [98,99]. Sulfide chemical passivation
by using water ammonium sulfide ((NH4)2S) or sodium
sulfide (Na2S) solutions is one of the most useful methods
used in NW-based solar cells [100] and other electronic
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devices [101–103]. The principle of sulfide passivation is
the removal of native oxide layers and the saturation of
dangling bonds by S-ions [104]. The stability of the sul-
fide passivating layer, however, was not good enough
under ambient conditions. In 2015, Alekseev et al. [105]
reported a nitride surface passivation method. The GaAs
NWs treated with the N2H2 solution exhibit a 6-fold
enhancement of PL intensity. Moreover, the nitride NWs
have better stability for the emission intensity to only
decrease 10% after six months.

The core-shell structure is another commonly used
method for passivating GaAs NWs. Various materials
that, in general, have a wider bandgap than GaAs are used
as the shell to confine the carriers in the core, such as
AlGaAs [8,9,74,79,96,97,106–113], GaInP [114], AlInP
[90,115], GaAsP [10], and GaNAs [116]. AlGaAs-GaAs
core-shell structured NWs were first reported in 2004 by
Tateno et al. [109]. The GaAs NWs passivated by AlGaAs

show a sharp PL emission (~730 nm) at low temperature,
which is ascribed to the excitonic recombination. The
exciton peak position confirms that the surface re-
combination in GaAs NWs was suppressed. In 2010,
Demichel et al. [97] compared the PL intensity of NWs
with or without an AlGaAs capping shell as a function of
the diameter. They found that the optical properties of
unpassivated NWs are governed by Fermi-level pining,
and the passivation of AlGaAs shells could reduce the
nonradiative recombination on the surface and that the
surface recombination velocity is one order of magnitude
lower than unpassivated samples. Previous research
showed that the AlGaAs shell could increase the PL
lifetime of NWs, as shown in Fig. 2c, which is also related
to the reduction of nonradiative recombination on the
surface [96,108,113]. In 2005, Sköld et al. [114] synthe-
sized GaAs-GaxIn1−xP (0.34 < x < 0.69) core-shell NWs.
The emission efficiency increased by two to three orders

Figure 2 Optical property of GaAs based NWs. (a) PL spectra of WZ/ZB mixed-phase NWs. (The amount of WZ phase gradually increases from top
to bottom.) Reproduced with permission from [35]. Copyright 2009, American Physical Society. (b) Comparison of PL intensity of GaAs NWs with
different doping types. Reproduced with permission from [57]. Copyright 2013, AIP Publishing. (c) Enhanced GaAs NW PL lifetime by AlGaAs
passivation. Reproduced with permission from [113]. Copyright 2012, American Chemical Society. (d) Wavelength tunability through component
adjustment in GaAs1−xSbx NWs. Reproduced with permission from [119]. Copyright 2017, American Chemical Society. (e) Wavelength tunability due
to QW width. Reproduced with permission from [79]. Copyright 2013, American Chemical Society. (f) Wavelength tunability due to alloy com-
position in QW NW. Reproduced with permission from [76]. Copyright 2019, Royal Society of Chemistry.
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due to shell passivation. Then, they used AlInP as a shell
to passivate the GaAs NWs [90]. The emission efficiency
of the GaAs core was enhanced at least two orders of
magnitude by removing the surface states.

The GaAs/GaAsP core-shell NWs were reported by
Hua and co-workers [10]. The PL emission intensity of
GaAsP-passivated NWs is stronger than that of bare
GaAs NWs over two orders of magnitude. Because of the
surface passivation, low-temperature NW laser emission
is realized. Lattice mismatch must be considered in shell
selection. The lattice constant mismatch of the core and
shell materials will induce strain and defect at the inter-
face, influencing the band structure of the core material.
AlGaAs is the most commonly used shell material be-
cause its lattice constant (~5.656 Å) is almost the same as
that of GaAs material (~5.653 Å). In general, another thin
GaAs capping layer outside the GaAs-AlGaAs core-shell
structure is needed due to the easy oxidation of AlGaAs
in the air [106,108]. In addition to various shell materials,
the thickness of the shell will also affect the optical
properties of the NWs. In 2013, Jiang et al. [107] in-
vestigated the effect of the AlGaAs shell thickness on the
minority carrier lifetime in the GaAs core. They found
that when the shell thickness is less than 15 nm, the PL
lifetime increases when the AlGaAs shell thickness in-
creases, which is related to the reducing tunneling
probability of carriers through the AlGaAs shell. When
the thickness of the shell exceeds 15 nm, the PL lifetime is
related to the growth quality of the shell.

Wavelength tunability of GaAs-based alloy NWs
Continuous wavelength tunability is one of the critical
requirements for advanced optoelectronic devices. The
composition adjustment in alloyed NWs is a direct
method to achieve this goal. In 2004, Mårtensson et al.
[117] grew GaAsP ternary NWs, which allowed for wa-
velength adjustment in variable composition NWs. In
2005, Sköld and co-workers [114] synthesized GaAs-
GaxIn1−xP (0.34 < x < 0.69) core-shell NWs. By adjusting
the shell composition, the bandgap of the material was
tuned over a range of 240 meV. In 2011, Chen et al. [118]
grew core-shell NWs with an InGaAs core. By varying the
indium composition from 12% to 20%, they achieved
wavelength control of on-chip nano-lasers over a ~50 nm
range. In 2017, Li et al. [119] reported the near full
composition range GaAs1−xSbx NWs. As shown in Fig. 2d,
the emission wavelength of the GaAs1−xSbx NWs is tun-
able from 844 nm (GaAs) to 1760 nm (GaAs0.07Sb0.93).
GaAs1−xSbx with 0 < x < 0.6 can be grown directly on a Si
substrate, while higher composition GaAsSb can be

grown through a GaAs/GaAs1−xSbx core-shell structure.

QW structure in GaAs-based NWs
Many parameters such as the number, width, and alloy
composition of the QW can be adjusted, facilitating the
regulation of the optical properties of NWs. QW in NWs
provides a new way to achieve the emission tunability and
improve the optical gain of GaAs-based NWs. Moreover,
the exciton binding energy of GaAs can be increased in
QWs because of the quantum confinement effect
[120,121]. In 2013, Fickenscher et al. [79] studied the
optical property of the GaAs/AlGaAs core-multi-shell
NWs with different QW thicknesses. The emitted photon
energy of the 8 nm QW NW were located at 1.58 eV
(~785 nm), which is 60 meV higher than the core GaAs
emission, while the peak position of 4 nm QW NW lo-
cated at 1.7 eV (~730 nm), were nearly 200 meV
(~55 nm) higher than the core emission (Fig. 2e). This
result confirms that the QW thickness could affect the
emission wavelength of QW NWs. We grew GaAs/
GaAsSb/GaAs coaxial single QW NWs with different Sb
compositions [76]. Fig. 2f shows the PL emission. It is
found that with Sb molar fractions increasing from 8 to
12%, the PL emission changes from 1.35 to 1.31 eV (~918
to 947 nm) at 10 K, while the temperature stability im-
proves [76]. The deeper QW is created for higher Sb
compositions, which provides more effective confinement
for carriers in the quasi-type-II band structure. The
composition in the QW also facilitates the adjustment of
the NWs lasing wavelength, which will be discussed in the
next section.

LASING FROM GaAs-BASED NWs
In recent years, the research of GaAs NWs laser achieved
great progress. This section focuses on the realization of
GaAs-based NW lasing through passivation, doping, and
novel structures. The 1D structure of NWs has natural
advantages for lasing because the NW can function as
both the optical cavity and gain medium, simultaneously.
The reasons limiting the lasing from GaAs-based NWs
were mentioned above, namely the worse crystal quality
of the NWs and the serious surface nonradiative re-
combination. After solving these problems, lasing from
GaAs NWs can be achieved. NWs have better strain
tolerance due to their small size, so complex structures
can be designed and manufactured. The development of
some other forms of NW lasing will be also discussed.

Cavity mode of NW lasers
Lasers working in UV and visible regions have developed
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rapidly, proving the feasibility of NW lasers. Due to the
1D structure, the F-P cavity has been commonly observed
in NW lasers [8–10,112,116,122], as shown in Fig. 3a. In
2007, Hua et al. [123] reported the F-P microcavity from
a single GaAs NW. The cavity was formed along the
length of the NW with both ends acting as reflecting
mirrors. At a lower temperature, a series of periodic peaks
were observed in the PL spectra, ranging from 830 to
940 nm, which was unrelated to excitation power. This
result indicates that the high refractive index difference
between the GaAs-based material and the surrounding
environment can form an F-P cavity where photons can
multiply. They attributed the absence of lasing to non-
radiative recombination on the surface of the NWs. Later,
they grew GaAs/GaAsP NWs to solve the problem of
surface states [10]. Thanks to its high crystal quality and
effective surface passivation, optically pumped lasing was
achieved at low temperatures. In addition to the F-P
cavity, laser cavities such as whispering gallery mode were
also observed in GaAs-based NWs.

In 2011, Chen et al. [118] demonstrated the first room-
temperature GaAs-based nano-laser grown on silicon.
They found that the lasing shows a special helically pro-
pagating mode, as illustrated in Fig. 3b, where both radius
and length determine cavity resonances. The strong
feedback of helical modes allows for lasers in NWs. Las-
ing of NWs in this mode, however, requires larger dia-
meter and smoother surface topography. In addition to
the cavity formed in single NWs, there is also photonic
crystal (PhC) lasers formed by NW arrays. In 2011,
Scofield and co-workers [124] grew GaAs/InGaAs/GaAs
axial heterostructure nanopillar arrays using the selective
area growth method. The thorough accurate growth of
gain medium within the cavity, realizes room-tempera-

ture lasing under pulsed laser pumping, as shown in
Fig. 3c. In the PhC cavities, both the position and dia-
meter of the pillar determine the cavity resonance. To
realize such a PhC laser, it is necessary to have an accu-
rate design and much more complicated processes to
grow the structure, which increases the process difficulty
and production cost of NW lasing. In addition to these
three cavities, other forms of laser cavities were reported
in other materials such as coupling cavities [125–127] and
random cavities [128–130]. Among different types of
cavities, the F-P cavity is most commonly used for GaAs-
based NW lasers due to the 1D advantage.

Threshold reduction of GaAs-based NW lasing
To achieve GaAs-based NW lasing with a low threshold,
the optical gain of GaAs material must be increased. The
core-shell structure is commonly used to solve this pro-
blem. The first GaAs-based NW lasing was reported in
2009 by Hua et al. [10]. By covering the GaAs NW core
with a GaAsP shell, optically pumped lasing was achieved
at low temperatures. They also studied power-dependent
and temperature-dependent emissions of NW lasing. A
blue shift of lasing peak was observed as pump power
increased, which is related to the band bending in the
heterostructure. As for the temperature-dependent PL
spectra, the red shift of the lasing wavelength is weaker
than that of the GaAs bandgap energy, which is attributed
to the temperature-dependent variation of the refractive
index.

In 2013, Saxena and co-workers [8] reported the optical
pumped room-temperature GaAs NW lasers. In this
work, the AlGaAs shell was used to reduce the surface
nonradiative recombination. To prevent the oxidation of
AlGaAs, a GaAs cap layer was grown on the outer layer.

Figure 3 Various cavity geometries of GaAs-based NW lasers. (a) F-P cavity mode. Reproduced with permission from [8]. Copyright 2013, Springer
Nature. (b) Helically propagating cavity modes. Reproduced with permission from [118]. Copyright 2011, Springer Nature. (c) Photonic crystal cavity.
Reproduced with permission from [124]. Copyright 2011, American Chemical Society.
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The authors also investigated the structural design of the
GaAs NW laser. For NW lasing, the number of guided
modes supported is depended on the NW diameters and
the index of the substrate. To effectively confine light
inside the NW, it must be placed on a substrate with a
smaller reflective index, such as SiO2 (n = 1.45). In this
configuration, the NW behaves as an F-P cavity, as illu-
strated in Fig. 4a. The large dielectric contract between
the NW and the surrounding allows the NW to guide the
photonic modes. By calculating the mode confinement, as
shown in Fig. 4b, they found that the diameter of the
NWs must be bigger than 160 nm to confine the lowest-
order guided mode. The effective index for guided modes
is closely related to the NW diameter, that is, a larger NW
diameter brings a bigger effective index and better-guided
mode confinement. Fig. 4c and d show the threshold gain
of the supported modes in NW versus diameter to achieve
a lower threshold. The diameter of the NW must be
bigger than 330 nm. A necessary condition for NW lasers
is that the round-trip gain for the guided mode inside the
NW should be larger than the round-trip losses. Since the
optical loss comes from the mirror losses at the end facets
of the NW, the gain medium must be long enough to get
sufficient amplification [72]. This implies that to achieve

NW lasing, longer NWs are needed. Under the condition
of ensuring the quality of growth, the length of the NW is
inversely proportional to the threshold. Their research
provides a reference for the design of NW lasers.

In the same year, Mayer et al. [9] also achieved room-
temperature lasing of GaAs NWs (Fig. 5a). They also used
GaAs/AlGaAs/GaAs core/shell/cap structure. The dia-
meter of the GaAs core is 340 nm, while the thickness of
AlGaAs shell is 5 nm, and capped by a 5-nm thick GaAs
layer. The length of the NWs is longer than 10 μm. Fig. 5b
shows the image of the NW emission above the threshold.
The interference fringes around the NW end-face can be
observed, while the spontaneous emission from the NW
body is weak. This indicates that the lasing comes from
the F-P cavity formed by the 1D NW. Furthermore, they
studied the temperature-dependent properties of NW
lasers and observed multimode lasing at temperatures
above 220 K (Fig. 5c), indicating that the reduced peak
gain and broadening of the gain spectrum are comparable
to the mode spacing at elevated temperatures.

In 2014, Sun et al. [131] demonstrated room-tem-
perature lasers in InGaAs/InGaP core-shell nanopillars.
They compared the optical properties of unpassivated,
GaAs-passivated, and InGaP-passivated InGaAs nano-

Figure 4 Design of single GaAs NW Laser. (a) The schematic diagram of F-P cavity in NW. Reproduced with permission from [14]. Copyright 2018,
IOP Publishing. (b) Relationship between effective refractive index and diameter of different guided modes in NWs. (c) Electric field intensity profiles
of different guided modes in NW. (d) Threshold gain of supported modes versus NW diameter. Reproduced with permission from [8] Copyright 2013,
Springer Nature.
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pillars. The results show that the PL intensity is enhanced
by ~10 times for GaAs-passivated and ~50 times for
InGaP-passivated compared with the bare InGaAs na-
nopillars (Fig. 5d). Moreover, the effective lifetime of
InGaAs/InGaP pillars is enhanced by a factor of five
compared with the unpassivated ones (Fig. 5e). Different
improvements were attributed to the larger band offset
between InGaP and InGaAs than that of the GaAs and
InGaAs structures. In the same year, Wei and co-workers
[112] grew GaAs/AlGaAs core-shell NWs and observed
lasing emission at room temperature. By careful design of
the length and cavity of the NW, the lasing wavelength
can change from 853.56 to 882.48 nm. Among those re-
sults, F-P mode lasing from NWs on silicon is challenging
to achieve due to the poor modal reflectivity at the NW-

silicon interface.
In 2016, a new structure was proposed and realized to

solve this problem. Mayer et al. [122], as illustrated in
Fig. 5f, grew a SiO2 interlayer between the NW and the
silicon substrate. The GaAs/AlGaAs core-shell NW with
free-standing, vertical geometry on silicon has high
spontaneous emission coupling (β) factors. Since SiO2 has
a smaller refractive index, the guided mode can be con-
fined in the NW, which brings the low threshold pump
power of only 11 ± 1 pJ per pulse and a remarkably high
spontaneous emission coupling factor of β = 21%.
Moreover, since the NW laser is in direct contact with the
substrate, a doped low-refractive-index dielectric layer
can be designed to form a heterojunction with the doped
NWs. This structure provides a new idea for electrically

Figure 5 Lasing from individual GaAs-AlGaAs core-shell NWs. (a) Power-dependent spectra above and below the threshold. (b) Emission spectra
from the top and side walls of the NWs, indicates F-P cavity mode lasing. (c) Temperature-dependent emission spectra. With temperature increase,
the laser change from single-mode to multi-mode. Reproduced with permission from [9]. Copyright 2013, Springer Nature. (d) The PL intensity is
enhanced by ∼10 and ∼50 times, respectively. (e) Corresponding TRPL decay for InGaAs nanopillars with GaAs and InGaP passivation layers.
Reproduced with permission from [131]. Copyright 2014, American Chemical Society. (f) Schematic representation of the GaAs-AlGaAs core-shell
NWs grown on silicon with an interlayer. Reproduced with permission from [122]. Copyright 2016, American Chemical Society.
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driven NW lasers working on silicon. They also demon-
strated the single-mode continuous-wave lasing from
individual GaAs-AlGaAs core-shell NWs working at low
temperatures [110]. The thermal effect is the biggest
problem toward realizing the NW laser working under
continuous optical pumping. To solve this problem,
previously reported GaAs-based NW lasers are realized
by pulsed laser pumping, which can reduce the thermal
effect induced during excitation. The quality of NW
growth must be improved and effective passivation
methods must be used to reduce nonradiative re-
combination. In 2017, Chen et al. [116] demonstrated
GaAs/GaNAs core-shell NW lasing. Their results showed
that GaNAs is also an excellent material for passivating
GaAs NWs to reduce surface nonradiative recombina-
tion. The most mature passivation method developed so
far is using GaAs/AlGaAs/GaAs core-shell-cap NWs. This
is due to the almost negligible lattice mismatch between
AlGaAs and GaAs, which shows convenience during

high-quality NW growth.
Another way to reduce the nonradiative recombination

is to increase the efficiency of radiative recombination. In
2016, Burgess and co-workers [56] employed impurity
doping to enhance the radiative efficiency and achieved
lasing in unpassivated NWs. As shown in Fig. 6a, Zn-
doping leads to a ZB twining superlattice structure. The
external quantum efficiency of the doped NW is two
orders of magnitude higher than that of the undoped
NW. Due to the increasing differential gain and reducing
the transparency carrier density, lasing was achieved at
room temperature, as shown in Fig. 6b. The enhanced
optical property indicates a significant increase in radia-
tion efficiency but the room-temperature lifetime of the
doped samples is still in the same order of picoseconds
(Fig. 6c). Doping, therefore, cannot effectively reduce the
nonradiative recombination that occurs on the surface of
NWs. The increase in PL intensity, therefore, is related to
the increase in radiation recombination efficiency. With

Figure 6 Lasing from doped GaAs NWs. (a) Morphology of doped GaAs NWs. (b) Power-dependent spectra above and below the threshold and
logarithmic map of a composite optical image above threshold. (c) Carrier lifetime of doped GaAs NWs. Reproduced with permission from [56].
Copyright 2016, Springer Nature. (d) Internal quantum efficiency as a function of doping concentration. (e) Lasing yield as a function of doping
concentration and NW length. Reproduced with permission from [54]. Copyright 2019, American Chemical Society.
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the picosecond carrier lifetime, doped NW lasers are
more suitable for applications in high-speed devices. In
2019, Alanis et al. [54] investigated the effects of doping
levels and NW length on NW lasing thresholds. Fig. 6d
and e show the statistical results of the optical properties
of 975 NWs with different doping concentrations and
lengths. For higher doping levels, the PL intensity is en-
hanced, and the improvement in functional performance
is further confirmed by the lower laser threshold and the
high laser yield of the NWs with a higher doping level.
Excessive doping, however, will induce Auger re-
combination and degrade the optical performance of
NWs. In the F-P cavity, longer NWs bring bigger optical
gain, which will lower the lasing threshold and increase
the lasing yield.

Optical gain improvement and lasing tunability
The QW structure in NWs provides more adjustability
for NW lasing. The optical gain of a QW is related to the
number of wells, and the lasing wavelength can be ad-
justed by the width of the well and the composition of the
alloy in the well.

In 2016, Stettner et al. [65] compared the lasing beha-
vior of a single QW (SQW) and multiple QW (MQW) in
coaxial NWs. In SQW, a single GaAs layer (~8 nm) is
sandwiched between AlGaAs barriers, while the MQW
consists of seven-period GaAs QWs (8 nm) separated by
AlGaAs layers (10 nm). Their laser performances show
different trends. In the MQW NW, the lasing shifted to
higher photon energy with increasing excitation power.
The blue shift is attributed to band filling effects. The
threshold measured in MQW NWs is about 6.5 times
smaller than that in SQW. Overall, in weakly coupled
QW separated by high barriers, each well is almost in-
dependent. The density state of electrons increases with
the number of wells, resulting in bigger optical gain and
lower lasing threshold. In the same year, Saxena and co-
workers [73] presented the design of the F-P type NW
cavities with radial GaAs/AlGaAs MQW active regions.
They proved that to obtain the lowest threshold in a given
NW structure, suitable QW numbers and QW widths are
needed. The laser mode is determined by the placement
of the QW rather than the diameter of the NW. By
modeling the loss in the GaAs/AlGaAs QW structure, it is
found that for all diameters larger than 240 nm, the TE01
mode has the smallest modal loss, as shown in Fig. 7a,
which is different from the NW with the core as the active
region [8]. The absorbing passive region in MQW causes
this difference. The TE01 mode has the lowest loss and is
related to its poor overlap of intensity profile with the

passive region. In their design, the diameter of the NW
must be bigger than 400 nm to minimize the TE01 mode
loss. To increase the modal gain, multiple QWs can be
used but the barriers must be thick enough to avoid
coupling. Fig. 7b shows the model loss of the TE01 mode
with different well numbers and well thicknesses. It is
found that in NWs with a diameter of 420 nm, the op-
timal number of wells is eight and the optimal well
thickness is 4 nm. Although the gain is proportional to
the number of wells, when having more than eight pairs
of QWs, the thickness of the barrier layer is not enough to
separate each QWs. They grew MQW NWs as designed
and got NW lasing with a low threshold. The experi-
mental results agree well with the simulation (Fig. 7c and
d). In 2017, Yuan et al. [68] studied the growth and op-
tical property of GaAsSb/AlGaAs SQW. Because of the
higher growth quality and support for the F-P cavity
mode, they observed strongly stimulated radiation. Po-
larization-dependent PL and simulation results confirm
that the periodic peaks are the TE01 mode.

The wavelength tunability of GaAs-based NW lasing
was first reported in 2011. Chen et al. [118] changed the
In composition of InGaAs/GaAs core-shell NWs between
~12% and 20% and realized a 50 nm tunability of lasing
wavelength. The introduction of the QW structure in
NWs provides more advantages for NW laser wavelength
tunability. In the QW structure, modifying the width of
the QW can realize a small range of lasing wavelengths.
Altering the alloy composition of the active region can
achieve wider laser wavelength tunability. In 2017, Lu et
al. [71] grew InGaAs/InP NWs. When the thickness of
the QW reduces from 5 to 1.3 nm, the lasing wavelength
blue shifts approximately 200 nm. With the increase of In
composition, the lasing wavelength can shift from ~1200
to 1300 nm. Similar observations were also reported in
InGaAs/InP MQW NWs. In 2018, Stettner et al. [67]
observed lasing in GaAs/(In, Al)GaAs MQW NWs. When
the In composition is adjusted between 0% and 40% for
InGaAs, the lasing peak position can be changed from
1.55 to 1.36 eV (~800 to 912 nm). By controlling the
growth temperature of the shell, the doping of In will
increase and the alloy intermixing in the MQW can be
reduced. Then, the lasing peak energy can be further
adjusted to 1.18 eV (~1050 nm), as shown in Fig. 8a. The
modulation of the lasing wavelength caused by the
composition change was also reported in the axial QW
structure. In 2018, Ren and co-workers [86] demon-
strated a single-mode NW laser with six GaAsSb-based
multiple superlattices, where each superlattice consists of
ten GaAsSb-rich inserts, as indicated in Fig. 8b. By
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changing the Sb composition between 1% and 8%, the
laser emission wavelength is adjusted between 880 and
980 nm.

Plasmonic GaAs-based NW lasing
A promising way to further miniaturize NW lasers is to
combine the material with surface plasmons. In 2016, Ho
et al. [87] introduced the first quantum dot-based plas-
monic laser. The GaAs/AlGaAs core-shell NW containing
InGaAs quantum dots was placed directly on silver film.
Although the diameter of the NW is smaller than the
minimum size of the restricted gain mode, they observed
the laser emission due to the coupling between the
quantum dots and the surface plasmon. In 2017, Ber-
múdez-Ureña and co-workers [132] reported the reali-
zation of hybrid photonic devices consisting of NW lasers
integrated with V-groove plasmonic waveguides. Theo-
retical considerations suggest that the observed lasing is
enabled by a waveguided hybrid photonic-plasmonic
mode. In addition to surface plasmon lasers, in 2018, Ha

et al. [133] demonstrated directional lasing in active di-
electric nano-antenna arrays by coupling leaky re-
sonances excited in GaAs nanopillars.

SUMMARY AND PROSPECTS
In conclusion, there have been significant achievements
in the growth of GaAs-based NWs with high crystal
quality and complex structures, which is essential for
achieving infrared NW lasers. Controlling crystal-
lographic phase purity is a major challenge for GaAs NW
growth based on the VLS mechanism. Currently, TPL
theory is used to explain the appearance of the metastable
WZ phase. The growth of pure-phase GaAs NWs can be
realized by controlling the temperature and V:III
equivalent beam ratio during the growth process. There
have also been great advances in the regulation of NW
properties such as doping and QW structures. The optical
property of GaAs-based NWs was improved significantly.
GaAs-based NWs suffer from serious surface states due to
the large surface-to-volume ratio. This can be solved by

Figure 7 Design for GaAs multi-QW NW laser. (a) Modal loss as a function of QW NW diameter. (b) Modal gain of QWs NWs with different QW
numbers and widths. (c) Structural characterization of GaAs multi-QW NWs. (d) Room-temperature lasing characteristics. Reproduced with
permission from [73]. Copyright 2016, American Chemical Society.
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reducing nonradiative recombination by passivation or
increasing the radiative recombination by doping. Much
research focuses on the continuous wavelength tunability
of NW optical properties. Composition adjustments in
alloyed NWs and QW structures were used to facilitate
the regulation of the optical properties of GaAs-based
NWs. By the proper design of the optical cavity and
improvement of the optical gain, lasing can be achieved in
individual NWs. Complex QW structures in NWs can
effectively lower the threshold and allow for the con-
tinuous tunability of lasing wavelengths.

Although great progress has been made in GaAs-based
NW lasers, there are still some encumbrances that must
be overcome to fully achieve the potential of these lasers.
Due to the bad thermal dissipation, most optically
pumped NW lasers are realized by pulse pumping, which
could produce sufficient instantaneous carrier density
with lower thermal effects. Continuous nanowire lasers,
however, are required in optical integrated devices. To
reduce the heat generated in NWs and achieve con-
tinuous-wave lasing at room temperature, effective and
low refractive index heat sinking are required. In 2018,

Valente et al. [134] demonstrated a technique to transfer
large-area NW arrays to flexible substrates. They ob-
served that the PL emission was improved due to the
modification of the surface states. The transfer technology
allows the achievement of GaAs-based nanowire lasing on
flexible substrates. Most importantly, electrically pumped
GaAs-based NW lasers are still the biggest challenge.
Electrical injection is a critical part of any semiconductor
laser, especially for nanophotonic integrated systems or
on-chip systems. To achieve electrical injection, one of
the key issues is the design of a favorable injection con-
figuration. QW can potentially form a p-n junction that
allows for the higher concentration of electrons and holes
to be injected, which provides conditions for electrically
pumped GaAs-based nanowire lasing.
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GaAs基纳米线的光学性质和激射
李浩林1,2†, 陈宇婷2†, 魏志鹏1*, 陈锐2*

摘要 工作在红外波段的砷化镓(GaAs)基纳米线激光器在集成光
电子学中起着重要作用. 在过去的十几年中, 纳米线激光器领域发
展迅速, 但是与工作在紫外和可见波段的材料相比, 由于GaAs基材
料的特性, 近红外激光器的实现相对困难. 在本文中, 我们着重介
绍了GaAs基纳米线的最新进展, 特别是GaAs纳米线的光学性质和
激射特性. 详细介绍了GaAs纳米线的生长机理, 包括晶相控制和复
杂结构的生长. 回顾并讨论了GaAs基纳米线的光学性质的影响因
素和改进方法. 最后, 展示了GaAs基纳米线激光器的设计及其最
新进展.
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