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Excitons in Double Halide Perovskites
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1. Introduction

Halide perovskites have received intensive
attention recently because of their
advanced optoelectronic properties and
extensive applications.[1–13] In particular,
the observed broadband white-light emis-
sions in halide perovskites have been widely
investigated due to their great potential in
solid-state broad photoluminescence.[14–18]

Conventional broadband phosphors usually
rely on extrinsic dopants and surface
sites.[19,20] In contrast, current methods pro-
duce white light by mixing multiple kinds
of phosphors or light-emitting diodes.
The broadband emission achieved by halide
perovskites covers the most range of visible
light to avoid the inevitable color changes
and energy loss induced by the mixing of
phosphors, which improves the general effi-
ciency and quality of solid-state photolumi-
nescence. Therefore, the stable and efficient
broadband emissions in halide perovskites
are of great importance for the development
of single-source emitters and desirable

for the next generation of solid-state photoluminescence.
Currently, the origin of these intriguing broadband emissions
in halide perovskites is widely attributed to the inner self-trapped
excitons (STEs).[21–23] The STEs effect indicates the phenomenon
that excitons are confined to the lattices by the intense electron-
phonon coupling inside the materials. This self-trapping process
will induce corresponding lattice distortions and result in the
self-trapped states within the bandgap. These newly formed states
have lower energy levels than free excitons and their emissions
will process a broad full width at half maximum (FWHM)
together with a large Stokes shift.[24] The dimensionless
Huang–Rhys factor S initially describes the interaction intensities
of the electrons bound to the localized centers with the phonons
in crystals.[25] Such an electron–phonon coupling effect induces a
corresponding lattice relaxation, which refers to the changes in
the atomic equilibrium configurations between the ground
state and the excited states. This process is accompanied by a
unique optical transition, which matches the observed character-
istics of the STEs emissions. Accordingly, the dimensionless
Huang–Rhys factor S has been widely used as a reliable index
to evaluate the strength of STEs effects in various materials.[26–28]

The soft lattice property and impressive photovoltaic perfor-
mance of conventional metal halide perovskites are conducive
to the formation of STEs. However, these emerging materials
also suffer serious challenges, such as instabilities at high
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Broadband emission induced by self-trapped excitons (STEs) in double halide
perovskites (DHPs) has received continuous attention in recent years. However,
the comprehensive understanding of the STEs formation mechanism is still in its
early stage. The corresponding roles of different B-site cations also remain
unclear in these advanced materials. The lack of an effective STEs database for
DHPs hinders the efficient discovery of potential optoelectronic materials with
strong STEs. Herein, a systematic STEs database is built for DHPs through
density functional theory (DFT) calculations and proposed a highly efficient
predictive machine learning (ML) model of the Huang–Rhys factor S for the first
time. Results reveal the different contributions of two B-site metal cations to the
formation of STEs in DHPs, which helps to understand the in-depth nature of
STEs. Based on the accurate predictions of the effective phonon frequency ωLO,
it is further realized that the prediction of S without conducting the time-
consuming phonon property calculations of DHPs offers new opportunities for
exploring the STEs. Combining DFT calculations and ML techniques, this study
supplies an effective approach to efficiently discover the potential novel
optoelectronic materials, which provides important guidance for the future
exploration of promising solid-state phosphors.
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humidity, unsustainable performances at high temperatures, the
toxicity of lead, etc.[29–32] Compared to traditional halide perov-
skites, double halide perovskites (DHPs) have a combination
of monovalent and trivalent cations on the original B-sites.
This unique feature realizes the lead-free property in DHPs to
improve their compositional compatibility. In addition, the alter-
nating arrangement of the monovalent and trivalent B-site cati-
ons breaks the original spatial symmetry of the lattice array,
improving the structural tunability and electronic dimensionality
of DHPs.[33] Therefore, DHPs are better candidates compared to
traditional halide perovskites for the further development of
STEs materials. In recent years, there have been increasing
reports pointing out the observed strong STEs effect in
DHPs.[34–36] For example, Luo et al. have successfully obtained
efficient broadband emission in DHPs by alloying the B-site cat-
ions. Their optimally alloyed Cs2(Ag0.60Na0.40)InCl6 with 0.04%
bismuth doping produced a durable white light with a high quan-
tum efficiency of 86� 5%.[34] In addition, Han et al. also realized
an efficient broadband emission in DHPs nanocrystals with high
stability by doping Agþ into the Cs2NaInCl6 lattice to convert the
original dark STEs into bright states.[35] Wang et al. also observed
the distinctive STEs emissions in a series of doped DHPs and
they confirmed the corresponding lattice distortions in an excited
state by using the femtosecond transient absorption spectros-
copy.[36] Although these previous studies have demonstrated
the great potential of DHPs as STEs materials, they still lack a
systematic summary of the STEs formation mechanisms and
the corresponding roles of different B-site cations in the
DHPs. Ke et al. obtained broad STEs emissions in their doped
DHPs systems and revealed that the final dominant emission is
attributed to the distinct energy-transfer channel from the doped-
ion guest to the double-perovskite host.[37] However, the doping
mechanism to produce the obvious broadband emissions in
DHPs is still obscure due to the limited reported samples.
Another difficulty impeding the further development of STEs
materials is the lack of high-throughput capabilities to screen
large-scale STEs candidates. Even though the fully decoded-
STEs mechanisms are still absent, the high-throughput screen-
ing of large-scale STEs materials offers an effective approach to
quickly identify the potential promising STEs candidates and
inspire the design of next-generation STEs devices to break
the current efficiency bottlenecks.

As a powerful data-driven tool to solve problems in materials
sciences, machine learning (ML) is capable of processing large-
scale datasets, predicting unknown properties, and screening tar-
get materials.[38–48] Applying ML techniques for large-scale
screening of STEs candidates in DHPs is expected to be a prom-
ising approach to realize the fast discovery of advanced STEs
materials. As a powerful ML regression algorithm, the gradient
boosting regression (GBR) algorithm method is able to achieve a
reasonable balance between strong predictive capabilities and
acceptable interpretability, which have been extensively applied
in the screening of various materials.[49–53] Technically, the
GBR method is an ensemble algorithm that combines multiple
weak prediction models to get an overall better performance.[54]

However, there is no valid and comprehensive database on STEs
properties in DHPs supplied by experiments or theoretical
calculations. In our previous work, we have evaluated the
STEs properties in DHPs Cs2B

1B2Cl6 (B1=Naþ, Kþ;

B2=Al3þ, Ga3þ, In3þ) and confirmed that the Jahn–Teller dis-
tortion in a strong excitonic as well as electron–phonon coupling
environment is the main source of STEs generation.[55] Our pro-
posed method provides an opportunity to evaluate STEs in DHPs
based on DFT calculations and build a reliable database for the
further development of STEs materials.

To overcome the challenges, we present a systematic STEs
database of DHPs in this work based on the DFT calculations
and propose an accurate ML model regarding the prediction
of Huang–Rhys factor S for the first time. As shown in
Figure 1, the whole workflow of this work is divided into three
phases: dataset preparation, model selection, and result analysis.
In the dataset preparation phase, we first construct 72 DHPs
structures for DFT calculations based on the atomic substitutions
of the B-site metal cations. Then, we perform geometry optimi-
zations on these structures based on strict criteria and match
them with a series of basic features (also called as descriptors).
Various physical parameters of these structures including the
effective mass, dielectric constants, and phonon frequencies
are also carefully calculated as important parts of the database.
According to these fundamental parameters, we further investi-
gate the excitonic and electron–phonon coupling characteristics
of our constructed DHPs structures. After excluding the struc-
tures with a failed estimation of the excited state energy, we suc-
cessfully calculate the Huang–Rhys factor S values of the left 60
suitable structures. Accordingly, we combine the DFT results
and the specific features to establish a complete dataset, which
contains the STEs information of these materials. Through the
GBR algorithm and cross-validation method to train and evaluate
the target ML models, respectively, we finally screen out the best-
performing ML model from the iterations to predict our target
objects. In the end, the performance of these trained models
and the potential connections between the physical parameters
and the labeled features are investigated through the output
Pearson correlation factors (CFs), which is one of the most used
approaches to measure the strength and direction of a linear rela-
tionship between two variables.[56] Notably, we have successfully
achieved efficient and accurate predictions of S values based on
our improved trained ML models with the predicted ωLO. In par-
ticular, we predicted the S value of 56.05 for the unknown
Cs2CuSbCl6 as a promising STEs material, supporting the prac-
tical predictive capabilities of our proposed method. Combining
the DFT calculations and the ML techniques, this research pro-
vides a solid approach to screen potential novel STEs materials
with high efficiency, which creates the possibility for the design
of next-generation optoelectronic materials.

2. Results and Discussion

DHPs with formula A2B
1B2X6 generally contain metal or organic

cations on the A-site positions, monovalent and trivalent metal
cations on the B-site positions, and halogen anions on the X-site
positions. To investigate the roles of different B-site cations on
the STEs properties in DHPs, we fix the A-site cations as Csþ and
X-site anions as Cl� in this work for the DHPs models. For the
selection criteria of B1 and B2 cations, we strictly choose the
elements with common valence states of þ1 (Group 1 and 11)
and þ3 (Group 3, 13, and 15), respectively. Elements with
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nonmetallic or rarely display the valence state þ1 and þ3 are not
considered in this work because they are not applicable to the
practical synthesis of perovskites. As a result, 72 possible
DHPs structures Cs2B

1B2Cl6 are constructed based on the differ-
ent combinations of B1 and B2 cations. In detail, as shown in
Figure 2a, B1=Naþ, Kþ, Rbþ, Csþ, Cuþ, Agþ, Auþ, Inþ, Tlþ;
B2=Al3þ, Ga3þ, In3þ, Tl3þ, Sb3þ, Bi3þ, Sc3þ, Y3þ. The elements
of In and Tl have both þ1 and þ3 as the common valence states,
so we also consider their possibilities in the positions of B1 even
though they belong to Group 13. The unit cell of our constructed
DHPs Cs2B

1B2Cl6 is shown in Figure 2b, of which the lattice
belongs to the triclinic system, and the two different kinds of
octahedrons are aligned alternately. The green octahedron and
blue octahedron represent the B1Cl6, and B2Cl6, respectively.
The overall structure of DHPs is demonstrated as a corner-
sharing three-dimensional array of metal-halogen octahedrons.
The A-site cations are in the space between the octahedrons,
while the B1 and B2 cations alternately occupy the center of these
octahedrons. Different combinations of the B1 and B2 cations
change the size ratio and spatial configuration of these octahe-
drons, resulting in various electronic states distribution and lat-
tice vibration modes. All these key changes significantly alter
the formation of STEs. Based on DFT calculations, we have
first calculated the bandgap of all the DHPs (Figure 2c), which
have shown a good consistency with the previous reported
works (Table S1, Supporting Information). As we observed,
the introduction of Sc and Y atoms increases the bandgap
values because of their high energy level of antibonding
orbitals with halogen atoms. In contrast, the introduction of
Cu, Ag, and Au atoms leads to an obvious metallization of these
materials. There are seven samples (Cs2CuGaCl6, Cs2CuInCl6,
Cs2CuTlCl6, Cs2AgTlCl6, Cs2AuGaCl6, Cs2AuInCl6, and
Cs2AuTlCl6) classified as conductors and will not be included
in our dataset for STEs.

To construct an effective database of STEs information in
DHPs, it is necessary to select and calculate quantifiable physical
parameters for describing the STEs properties in these materials,
which requires an in-depth understanding of the formation
mechanism of STEs. In general, four essential factors determine
the formation of STEs in DHPs: intense excitonic effects, unique
atomic compositions, appropriate lattice configurations, and
strong electron–phonon couplings. The atomic composition
and lattice configuration are basic information of the specific lat-
tice, which are usually described by several simple parameters
such as atomic numbers, bond lengths, lattice volumes, etc.
In this work, we briefly use the lattice volume to quantify the
difference between these similar DHPs lattice configurations.
For the atomic composition, considering the different combina-
tions of the B-site cations, we select 8 fundamental features to
accurately describe the difference between B1 and B2 cations
for each structure including 1) group; 2) period; 3) atomic num-
ber; 4) atomic mass; 5) atomic radius; 6) electronegativity; 7) first
ionization energy; and 8) their bond length with halogen atoms.
The lattice volume and bond length data are obtained from the
DFT calculations, and the other seven fundamental atomic infor-
mation are collected from the online database of the
International Union of Pure and Applied Chemistry
(IUPAC).[57] These primary data form the first part of our
STEs database, which is defined as “Level 1 data”. Besides these
data, we also need some quantifiable parameters to characterize
the electronic, dielectric, and vibrational properties of these
DHPs structures for the STEs effect. Accordingly, we select
and calculate six common features for these materials: the effec-
tive mass of electrons (me) and holes (mh), the reduced mass (μ),
the static (εs) and optical (ε∞) dielectric constants, and the effec-
tive phonon frequency (ωLO). The me, mh, εs, and ε∞ are directly
obtained from the DFT calculations while the μ and ωLO are
derived from the corresponding formulas based on the

Figure 1. Schematic of the workflow combined with the DFT calculations and the ML techniques to train the satisfied ML models for the STEs properties
in DHPs (Cs2B

1B2Cl6).
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acquisition of necessary parameters in advance. These data
form the second part of our STEs database, which is defined
as “Level 2 data”.

In the end, we attempt to calculate the excitonic properties and
electron–phonon coupling effect in these structures. In general, a
photogenerated exciton is understood as a stable lone electron–
hole pair confined by the Coulomb force in the materials. From
this aspect, the strength and size of one exciton are described by
the binding energy and radius, respectively. By applying the
hydrogenic Rydberg model, we calculate the exciton binding
energy Eb and the exciton Bohr radius rb of these DHPs materi-
als to evaluate their excitonic characteristics.[58,59] Our results of
the Eb and rb range are presented in Figure 3a, which supply
important database for the ML predictions. As for the other issue,
the electron–phonon coupling effect is described by the polaron
theory. In detail, the moving electrons in ionic crystals may inter-
act with the long-wave polar optic vibrations and keep inevitable
coupling effect with their neighbor lattices, which are considered
as the origin of the self-trapped states.[60,61] After applying the
Frohlich coupling model and the Feynman polaron theory, we
choose three crucial parameters to describe the strength of the
electron–phonon coupling effect in these DHPs structures:
Frohlich coupling constant (α), polaron radius (rp), and polaron
mass (mp).

[62,63] These parameters in different structures are

presented in Figure 3b, where the horizontal coordinate repre-
sents the coupling constant, the circle size represents the polaron
radius, and the color depth represents the polaron mass. All
these five parameters (Eb, rb, α, rp, and mp) form the third part
of our STEs database, which is defined as “Level 3 data”.

To train an effective ML model regarding the prediction of S
values in DHPs, the S values of known materials are needed to
generate the corresponding GBR model. Therefore, we calculate
the corresponding lattice deformation energy Ed of these DHPs
structures between the ground state and the first excited state.
We further obtain the required S values by calculating
S ¼ Ed

ℏωLO
, and the S values are defined as “Level 4 data”. Here,

five DHPs structures (Cs2InSbCl6, Cs2AgGaCl6, Cs2CuAlCl6,
Cs2CuSbCl6, Cs2CuBiCl6) fail to output a reasonable Ed value
due to their negligible variations between the equilibrium atomic
coordinates of the two different states. Therefore, they are
excluded from the target STEs database of DHPs. Detailed com-
putation methods related to all the above parameters are supplied
in Supporting Information or referred to our previous work.[55]

After careful evaluations of all the parameters, we finally built a
systematic STEs database of DHPs containing 60 valid samples
for the first time.

As we mentioned above, the initial lattice characteristics
of one identified DHPs structure should play a decisive role

Figure 2. a) Schematic diagram of periodic table showing the selection of different cations in double halide perovskites; b) Lattice structure of the
constructed double halide perovskite model for the DFT calculations. Black lines confine the triclinic lattice. The green and blue color represents
the octahedron of Bþ and B3þ, respectively; c) Calculated bandgap values of various double halide perovskites based on different combinations of
B-site metal cations.
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in its fundamental physical nature such as the dielectric and
electron–phonon coupling properties, which satisfies the law of
causality. To obtain satisfactory ML models for accurate predic-
tions of the expected properties of the known DHPs materials,
we perform the supervised learning algorithms on the current
databases. This approach alleviates the heavy loading of DFT cal-
culations and bridges an efficient channel between the basic infor-
mation and the complicated parameters, which creates the
possibility of high-throughput screening of large-scale STEs mate-
rials. In this work, we choose the GBR method as the ML algo-
rithm to tackle our STEs regression task. Based on our self-
prepared database, we first train and screen six ML models to pre-
dict the six crucial indicative parameters (μ, ε∞, εs, ωLO, α, and rp)
of DHPs. Detailed screen procedures refer to the corresponding
descriptions and Figure S1, Supporting Information. During this
process, we use the Level 1 data as the input labeled features to
generate the prediction ML models for these six parameters.
Figure 4 presents the comparison of the electronic properties
of our DHPs structures between ML predictions and DFT

calculations. Here, we use two indexes to evaluate the predictive
performance of the trained ML models: root mean square error
(RMSE) and passing rate (PR). The RMSE index measures the
average difference between the ML-predicted results and the
DFT-calculated results, which is expressed by the formula

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

T
t¼1

ðŷt�ytÞ2
T

q

. For the other index PR, it is defined
specifically in this work to evaluate the proportion of the
forecast results within the acceptable error range
(25% in this work) to the total predictions, which is expressed

as PRð25%Þ ¼ NUM jypre�ytrue
ytrue j<25%

� �

NUMðytrueÞ . As shown in Figure 4a–f, our

ML-trained models for the six parameters (μ, ε∞, εs, ωLO, α,
and rp) of the DHPs structures exhibit strong predictive ability
with 100% PR and low RMSE of 0.01, 0.01, 0.17, 4.50, 0.17,
and 1.50, respectively. Such high prediction accuracies confirm
that these higher-level data are precisely predicted by our trained
MLmodels based on the fundamental lattice information. In addi-
tion, we output the CFs between the expected parameters and the
labeled features after training the ML models. The absolute value

Figure 3. Calculated a) excitonic and b) polaronic characteristics of different DHPs.
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of CFs represents the strength of their correlation, and the
positive (or negative) factors indicate a positive (or negative)
correlation, which helps us further explore the roles of different
B-site cations in the generation process of STEs. As shown in
Figure 4g, different features have different degrees of influence
on the physical properties of the target. In this work, we propose
a simple criterion, where the features with an absolute value of CF
greater than 0.4 are regarded as strongly correlated features.
Moreover, to distinguish the influence degree of the B1 and B2

cations on different target physical parameters, we calculate the
sum of the absolute values of the CFs related to B1 and B2 cations,
denoted as CF(B1) and CF(B2), respectively. The integrated results
of CF(B1) and CF(B2) are listed in Table 1 for a brief comparison.

For the reduced mass μ, the group of B2 is regarded as a
strongly correlated feature with a high CF value of �0.51.

The corresponding CF(B1) is calculated as 2.02, which is slightly
lower than the value of CF(B2), 2.20. Since reduced mass is
derived from the effective mass of electrons and holes, this result
implies that B2 cations have more influence on the transfer abil-
ity of electrons in DHPs than B1 cations. This also means that B2

cations are more likely to become localization centers of electrons
or holes inside the DHPs, providing suitable conditions for
potential STEs formation. For the optical dielectric constant,
ε∞, the strongly correlated features are the group of B1, the
atomic radius of B1, the electronegativity of B1, and the first ioni-
zation energy of B1, with CF values as 0.54,�0.51, 0.58, and 0.51,
respectively. The corresponding CF(B1) is 3.25, and the CF(B2) is
0.61. For static dielectric constant εs, the strongly correlated fea-
tures become the period of B1, the atomic number of B1, the
atomic mass of B1, the bond length of B1, and the lattice volume,
with CF values as 0.48, 0.45, 0.45, 0.41, and 0.56, respectively.
The corresponding CF(B1) is 2.20, and the CF(B2) is 1.84.
These important data reflect that the B1 cations are more respon-
sible for the determination of the internal dielectric properties in
DHPs, which will further affect the strength of the electron–
phonon coupling effect. For the effective phonon frequency
ωLO, the group of B2 is the only strongly correlated feature with
a CF value of �0.42. The CF(B1) value of this parameter is cal-
culated as 0.49, while the CF(B2) is 1.90. Clearly, the evident

Figure 4. Comparison of six physical parameters between the ML predictions and the DFT calculations on DHPs. a) Reduced mass μ, b) optical dielectric
constant ε∞, c) static dielectric constant εs, d) effective phonon frequencyωLO, (e) Frohlich coupling constant α, and f ) polaron radius rp. g) The heat map
of the correlation factor matrices between these physical parameters and the selected descriptors.

Table 1. The comparison of the absolute value sum of the CFs related to
B1 and B2 cations.

μ ε∞ εs ωLO α rp S (with ωLO)

CF(B1) 2.02 3.25 2.20 0.49 2.61 3.61 0.78

CF(B2) 2.20 0.61 1.84 1.90 0.86 1.82 1.21
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difference between the CF(B1) and CF(B2) of ωLO represents the
major roles of B2 cations in determining the phonon patterns of
DHPs when compared to B1 cations. This supports that the sub-
stitution or doping of B2 cations induces the enhanced interac-
tions between electrons and lattice vibrations by altering the
phonon patterns, which contributes to the formation of STEs
in DHPs. For the Frohlich coupling constant α, the strongly

correlated features are the atomic radius of B1, the electronega-
tivity of B1, the first ionization energy of B1, the bond length of
B1, and the lattice volume, with CF values as 0.50, �0.49, �0.53,
0.53, and 0.43, respectively. The corresponding CF(B1) is 2.61,
and CF(B2) is 0.86. For the polaron radius rp, there are more
strongly correlated features including the group of B1 and B2,
the atomic radius of B1, the electronegativity of B1, the first

Figure 5. a) The schematic diagram indicates the strategies to realize the accurate prediction of S values in different scenarios. b–d) Comparison of the
predictive ability between the different S-ML models: (b) with DFT-calculated ωLO, c) without ωLO, and d) with ML-predicted ωLO. e) The correlation
factors between Huang–Rhys factor S values and different descriptors in our trained S-model. f ) The comparison of the S values between the DFT
calculations and the ML predictions based on the S-ML model with predicted ωLO. The red star represents the special predicted S value (56.05)
for Cs2CuSbCl6.
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ionization energy of B1, the bond length of B1, and the lattice vol-
ume, which exhibit CF values of 0.54, 0.42, �0.56, 0.63, 0.61,
�0.46, and �0.41, respectively. The corresponding CF(B1) is
3.61, and CF(B2) is 1.82. The relatively higher CF(B1) values of
these two parameters indicate that the B1 cations count more
on the polaronic effect in DHPs when compared to B2 cations,
indicating that the B1 cations play a more important role in tuning
the strength of electron–phonon coupling in DHPs.

To characterize the STEs effects in our DHPs structures, the
calculation of Huang–Rhys factor S becomes a necessary step.
However, this process requires considerable computation
demand due to the calculations of phonon properties and lattice
deformation energies. Our above efforts have verified the feasi-
bility of the implemented ML techniques in predicting complex
parameters. To reduce the required computational loadings for
the Huang–Rhys factor S, we further train an effective ML model
to predict such values based on our prepared database. According
to different input data, we have proposed three different scenar-
ios (Figure 5a). In this way, the Huang–Rhys factor S values are
expected to be directly obtained to realize the efficient and
high-throughput screening of STEs candidates. For the S-ML
model training, we start with inputting all the obtained data
(Level 1, 2, and 3 data) as descriptors to verify our understanding
of the STEs formation mechanisms. It is noted that an excellent
S-ML model with strong predictive ability is achieved (Figure 5b),
which has a high PR of 98.3% and a low RMSE of 2.65. Although
this result shows accurate predictions, such an ideal S-ML model
fed with the complete physical parameters (Level 1, 2, and 3 data)
is not practical, which corresponds to Scenario 1 in Figure 5a.
This is because the reuse of the ideal S-ML model also requires
the acquisition of these comprehensive data in advance, where
the time-consuming calculations of phonon properties are still
challenging. The goal of the S-ML model is to achieve accurate
predictions of S values with only the input of rough physical
parameters of the DHPs. We next train a S-ML model with only
inputting the Level 1 data as the labeled features, corresponding
to Scenario 2 in Figure 5a. As a result, this trained S-ML model
exhibits a poor predictive ability with a low PR of 86.7% and a
high RMSE of 15.13 (Figure 5c). According to the performance
of these two S-ML models, we understand the competitive rela-
tionship between their accurate prediction results and rough
input data. To maintain a balance between the high predictive
accuracy and the low computation amount of our S-ML model,
the parameters strongly correlated to the S values should be pre-
served as the input labeled features during the training process.
As shown in Figure 5d and Table 1, we present the CFs between
S values and different descriptors based on the S-ML model with
ωLO, where the corresponding CF is 0.78 and 1.21 for B1 and B2,
respectively. Although the overall CF(B2) is slightly higher than
CF(B1), neither B1 nor B2 cations show a strongly correlated
feature. There are three parameters that are important for the
S-prediction: static dielectric constant εs, Frohlich coupling con-
stant α, and effective phonon frequency ωLO. For the static dielec-
tric constant εs, we calculate this parameter of DHPs with little
DFT computational costs. The Frohlich coupling constant α is
easily derived if the prerequisite parameter ωLO has been
obtained in advance. Thus, the effective phonon frequency
ωLO is the only parameter worth concerning, which usually
requires considerable computation loadings. Fortunately, we

have trained the ωLO-ML model as we discussed above, and
the ML-predicted results are confirmed to be highly consistent
with the DFT-calculated data. As the Scenario 3 in Figure 5a,
we consider generating predicted ωLO from our valid ωLO-ML
model, and calculate other related parameters based on the pre-
dicted ωLO. Then we combine these processed parameters and
the original rough data to form a new input set for the S-ML
model. In this way, we are able to train a new S-ML model with
ML-predicted ωLO rather than DFT-calculated ωLO, which pre-
dicts the S values of DHPs without the calculations of their pho-
non properties. The trained S-MLmodel with predictedωLO has a
satisfactory predictive performance with a high PR of 95% and a
low RMSE of 2.93 (Figure 5e). This performance is comparable to
the S-ML model with calculated ωLO and much better than the S-
ML model without ωLO. To verify the actual predictive ability of
the S-ML model with predicted ωLO, we list the comparison
results of S values between the DFT calculations and the ML
predictions for each structure (Figure 5f ). The high consistency
of these results further supports the validation of our methodol-
ogy. Notably, we propose the predicted S value of an unknown
DHPs material Cs2CuSbCl6 as 56.05 based on our trained
S-ML model with predicted ωLO, which indicates the potential
of our proposed method in exploring novel perovskite materials.

3. Conclusion

In this work, we have constructed an effective ML model for the
prediction of the STEs effect in DHPs by combining DFT calcu-
lations and ML techniques based on 72 DHPs structures
Cs2B

1B2Cl6 with the atomic substitutions on the B-site cations.
The bandgap values of these structures reflect that the
existence of cation Cuþ, Agþ, and Auþ will lead to an obvious
metallization of these semiconductors. Considering the forma-
tion mechanism of STEs in DHPs, four types of data are required
in our database: atomic composition, lattice configuration, exci-
tonic effect, and electron–phonon coupling property. For atomic
compositions, we select eight features to describe the differences
in various combinations of the B1 and B2 cations for these struc-
tures including group, period, atomic number, atomic mass,
atomic radius, electronegativity, first ionization energy, and their
bond length with halogen atoms. For lattice configuration, we
briefly use the lattice volume to quantify the difference between
these similar lattices. For the excitonic effect, we calculate the
exciton binding energy Eb and the exciton Bohr radius rb of these
structures by applying the hydrogenic Rydberg model. Three cru-
cial parameters Frohlich coupling constant α, polaron radius rp,
and polaron mass mp are calculated to describe the strength of
the electron-phonon coupling effect. Most importantly, the
Huang–Rhys factor S values are calculated as the evaluation
indexes of the STEs effects in these DHPs. Through the careful
evaluation of different parameters, we have built an effective
database containing 60 valid samples of the STEs properties
in DHPs for the first time. Based on the supervised ML with
the GBR algorithm, we train and screen six predictive MLmodels
for the corresponding important physical parameters, which all
exhibit strong predictive capabilities with full PR and low RMSE.
The calculated CFs of these ML models reflect that B1 cations
contribute to the tuning of electron–phonon coupling strength
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while B2 cations are mainly responsible for electronic transfer
and phonon patterns. In the end, we train a predictive S-ML
model based on our prepared database (Level 1, 2, and 3 data),
where the introduction of ωLO displays accurate predictions. In
particular, the trained S-ML model with predicted ωLO displays
the best balance between high predictive accuracy and low
computation loadings, leading to a satisfactory predictive perfor-
mance with a high PR of 95% and a low RMSE of 2.93. Moreover,
the unknown S value of the DHPs material Cs2CuSbCl6 is also
predicted as 56.05 by the proposed S-ML model, supporting the
feasibility of our model for exploring novel perovskite structures.
Therefore, the construction of the dataset and proposed ML
approach are expected to accelerate the screening of potential
novel STEs materials in the future, which provides opportunities
for the high-throughput design of next-generation optoelectronic
materials.
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