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1. Introduction

Perovskite materials have attracted intensive attention in recent
decades because of their emerging outstanding performances in
optoelectronic applications such as lasers, solar cells, and light-
emitting diodes (LEDs).[1–9] Notably, the power conversion effi-
ciency (PCE) of perovskite solar cells is almost equal to that of

silicon-based solar cells as reported in
2019.[10] Higher PCEs exceeding 25% for
single-junction devices and 29% for tan-
dem perovskite-Si cells have been produced
as a result of recent advancements in
perovskite-based solar cells.[11,12] To date,
perovskite materials contain a variety of
subcategories, such as inorganic oxide per-
ovskites, halide perovskites, and hydride
perovskites, which generally exhibit a wide
range of activities in the field of optoelec-
tronics. Multiple attempts have been made
to screen or design an ideal optoelectronics
functional material from the enormous
perovskite materials family. In nature,
compared with conventional semiconduc-
tors, promising perovskite materials exhibit
high photoluminescence quantum yields
(PLQYs), strong light absorption, tunable
emissions, low-cost processing, etc.[13–16]

These advantageous properties of perov-
skite materials support their great potential
in the field of optoelectronics, providing
unique opportunities to be competitive can-
didates for next-generation optoelectronic
devices. However, in the research and com-
mercialization of perovskite materials, sev-

eral experimental challenges have slowed further advancement,
including lead toxicity, lattice instability, limited model data, and
unclear underlying mechanisms. For the toxicity of lead in perov-
skite materials, the synthesis of lead-free double perovskites as
an effective solution has been proposed in recent years.
Structural optimization against the lattice instability of perovskite
materials has also been proven to be feasible. Unfortunately,
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For next-generation optoelectronic devices with efficient energy harvesting and
conversion, designing advanced perovskite materials with exceptional optoe-
lectrical properties is highly critical. However, the conventional trial-and-error
approaches usually lead to long research periods, high costs, and low efficiency,
which hinder the efficient development of optoelectronic devices for broad
applications. The machine learning (ML) technique emerges as a powerful tool
for materials designs, which supplies promising solutions to break the current
bottlenecks in the developments of perovskite optoelectronics. Herein, the
fundamental workflow of ML to interpret the working mechanisms step by step
from a general perspective is first demonstrated. Then, the significant contri-
butions of ML in designs and explorations of perovskite optoelectronics
regarding novel materials discovery, the underlying mechanisms interpretation,
and large-scale information process strategy are illustrated. Based on current
research progress, the potential of ML techniques in cross-disciplinary directions
to achieve the boost of material designs and optimizations toward perovskite
materials is pointed out. In the end, the current advances of ML in perovskite
optoelectronics are summarized and the future development directions are
shown. This perspective supplies important insights into the developments of
perovskite materials for the next generation of efficient and stable optoelectronic
devices.
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although the understanding of perovskite materials is deepening
and the fabrication process is constantly improving, the long
development cycle and high expenses still hinder the large-scale
commercial uses of perovskite materials in the field of optoelec-
tronics. In detail, the current production process of an effective
and efficient optoelectronic device based on perovskite materials
should involve rational compositional design, careful synthesis,
systemic fabrication, activity characterization, and sufficient sta-
bility and aging tests. For each step, the time-consuming, high
repetition of data acquisition, and high complexity of data analy-
sis in traditional experimental approaches will obviously prolong
the research period to reach the target devices with satisfying
performances. To solve these issues, the amalgamation of
numeric simulation-guided computational applications and
human intuition-guided traditional materials science has become
one of the main trends in recent years to break the persisting bot-
tleneck in the development of novel optoelectronic materials.

In fact, various computing technologies have been widely
applied in materials sciences such as the density functional the-
ory (DFT) calculations, molecular dynamics (MD) simulations,
machine learning (ML), etc. For the DFT calculations, it is a type
of computational method used to investigate the electronic struc-
ture of many-body systems based on the quantum mechanical
model. For the MD simulations, they realize the computational
simulation of the physical movements of atoms and molecules
based on Newton’s equations of motion. Unlike these two com-
puting technologies, ML is a subfield of artificial intelligence and
relies on data-driven functions rather than parsed physical laws.
In recent years, ML has developed rapidly with an unprecedented
ability to enable versatile techniques in a wide range of applica-
tions such as computer vision, speech recognition, and weather
forecasting.[17–22] ML belongs to the field of computational sci-
ence that analyzes and interprets the patterns and structures
in data in order to achieve the purpose of learning, reasoning,
and decision-making without human interaction. In simple
terms, ML enables users to feed large amounts of data to com-
puter algorithms, and then the computer will analyze the data
and make data-driven recommendations and decisions solely
based on the input data. If the algorithm identifies any correc-
tions, it will integrate the corrected information to improve
future decisions. As an interdisciplinary technology, ML com-
bines different domain knowledge of computer science, statistics
engineering, materials science, etc. Here, domain knowledge
refers to the comprehensive knowledge reserved in a specialized
discipline, which is sufficient to deal with complicated scientific
problems. With fast computation speed and strong generaliza-
tion ability, ML technology effectively handles complex problems
that are difficult to solve by traditional experimental and compu-
tational methods. In particular, the applications of ML in materi-
als science researches have shown explosive growth in recent
decades, especially in the synthetic designs of newmaterials, per-
formance predictions, in-depth characterizations of material
microstructures, and improvements of material computational
simulation methods. Compared to other computing technolo-
gies, ML has the strong ability to classify and predict patterns
within a dataset and discern unforeseen trends that are otherwise
impossible for a human observer to identify. Depending on this
advantage, ML shows significant potential in perovskite optoelec-
tronics for accelerating the discovery of advanced material

candidates, decoding the underlying mechanisms of observed
phenomena, and high-throughput processing of material
information.[23–28] The current challenging area of ML technol-
ogy used in the field of materials science is how to acquire a sig-
nificant number of experimental or theoretical data and develop a
matching effective dataset. To overcome the shortcomings of ML
techniques in data mining, considerable efforts have been made
in recent years to combine the different advantages of multiple
computing technologies.[29–31] For example, Yang et al. presented
a deep learning approach to investigate the influencing degree of
ionic defects on the stability of CsPbI3 ternary systems based on
7,730 DFT-calculated structures and large-scale MD simula-
tions.[32] Although the thoughtful implementation of ML in
materials science is still at its preliminary stage, it is necessary
for researchers to maintain a sustained concern in this promis-
ing field to mitigate current experimental impediments and
achieve breakthroughs in current materials science.

In this perspective, we have highlighted and summarized the
recent research progresses of applying ML techniques as a pow-
erful tool to facilitate the development of advanced perovskite
optoelectronics, which starts from a concise overview of the
important ML-related concepts. In particular, we demonstrate
the pivotal role of ML in boosting scientific innovation of perov-
skite optoelectronics from three main aspects including discov-
ery of advanced materials, interpretation of underlying
mechanisms, and high-throughput processing of large-scale
information. Through the review of these recent works, we shed
the light on the great potential of ML techniques for designing
novel perovskite materials to benefit the fast development of
advanced optoelectronics for energy harvesting and storage. In
the end, we have also pointed out the remaining challenges, pro-
posed the possible multidisciplinaries, and supplied insightful
perspectives for further accelerating the performances of perov-
skite optoelectronics through ML techniques. All the ML-related
concepts and abbreviations in this work are supplied in Table 1
and 2.

2. Fundamental Understanding of ML and Its
Workflow

As an essential branch of computer science, ML generates
specific models based on existing databases and algorithms to
complete target tasks, which is an effective approach to achieve
the artificial intelligence in solving practical problems. For appli-
cations in materials science, ML algorithms are frequently
divided into two broad categories: unsupervised and supervised
learnings.[33] The main difference between these two categories
of algorithms is feature engineering, which represents the con-
verting process of raw data into features through statistical or ML
approaches.[34] Here, we emphasize the features as the measur-
able characteristics of a specific object such as a dataset or an
image. Extracting informative and discriminating features is
the key to perform effective feature engineering on the target
objects. Unsupervised learning algorithms explore patterns from
unlabeled data, while supervised learning algorithms only treat
available datasets with labeled features. Such characteristics
make these two kinds of algorithms suitable for different task
scenarios. For the supervised learning, the algorithm builds
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the ML model by iteratively generating predictions on the data
and adjusting for the correct responses. While supervised learn-
ing models tend to be more accurate than unsupervised learning
models, human interventions in advance are required to label the
data appropriately. Therefore, supervised learning is able to pro-
cess accurate data mining tasks, where the representative exam-
ples are classification and regression with limited sample data. In
contrast, unsupervised learning models work individually to dis-
cover the inherent structure of unlabeled data, which are more
applicable for tasks based on large sample data volume, including
clustering, association, and dimensionality reduction tasks.
However, the unsupervised learning models still have some
drawbacks, where some unsupervised learning models still
require human intervention to validate output variables. It is
worth noting that although supervised and unsupervised learn-
ing is suitable for dealing with different types of tasks, the basic
flow of application processes in materials science is broadly sim-
ilar. Here, as shown in Figure 1, we have summarized a basic
workflow for performing ML models in materials science to sug-
gest the target issues solutions: 1) Identify the exact object to be
addressed and determine the type of training data. At the start of
training ML models, researchers should first make sure of the
goals of the project and decide what type of data to collect.
For example, the predictions of one property of a given perovskite
optoelectronic device needs to collect the corresponding numeri-
cal results of this device. The automatic recognition of the mor-
phology features of a perovskite optoelectronic device needs the
corresponding morphology pictures as the training data. The
identified object should be definable, quantifiable, and based
on real physical principles; 2) Gather sufficient data to form a
dataset for model training. As a data-driven technology, ML mod-
els possess powerful prediction and classification capabilities that
heavily depend on the quantities as well as the qualities of the
training data. The “sufficiency” of data is a relative concept that
is determined by the accuracy of the final ML model. Common
sources of available material data include experimental records,
published literature, and online databases. In general, the exper-
imental data are the most reliable sources to be used in training
ML models due to the real environmental conditions. However,
strict experiments make it difficult to efficiently produce large-
scale useable data, which hinders the dataset construction for
ML model training. In contrast, although DFT calculations have
the advantages of automated data mining, these computational
results are more diverse due to the model buildings, calculation
settings, and simulation environments. To solve specific ML
issues, researchers are suggested to accumulate the data based
on the appropriate strategies in advance, where all data sources
should be consistent to avoid systematic errors. For the limited
datasets with strong correlations, the interpolation method can
be applied to make an effective extension; 3) Determine the fea-
ture representations and the corresponding algorithm. Typically,
the accuracy of the learned ML model strongly depends on its
feature engineering process. The feature vector expanded by
the input objectives should have enough information to describe
the characteristics of training data for contributing to the accu-
rate output. However, the number of features should not be too
large because when the dimensionality of the feature vector
increases, the volume of the space increases massively, leading
to the sparseness of available data. The reasonable settings of

Table 1. The brief explanations for ML-related concepts in this
perspective.

Concepts Brief Explanations

Domain knowledge The comprehensive knowledge reserved in a specialized
discipline to sufficiently deal with complicated scientific

problems.

Unsupervised learning Explore patterns from unlabeled data to discover the
inherent structure of unlabeled data.

Supervised learning Treat available datasets with labeled features, which require
human interventions in advance to label the data

appropriately.

Features The measurable characteristics of a specific dataset.

Feature engineering The converting process of raw data into features through
statistical or ML approaches.

Validation set Reflect the true performance of the targeted trained ML
model. It generally contains at least 10% contents of the
original dataset, which is distributed across the entire

range of the values.

Correlation coefficient An effective measure to identify the association degree
between the target properties and labeled variables.

Transfer learning Improve the new predictions of ML based on the
knowledge gained from previous learning processes.

Image recognition Classify the category of image content through the
statistics of pixel distributions, colors, textures, and other

characteristics in images.

Monitoring Evaluate the performance of ML models during training
and real-time deployment.

Table 2. The definitions for ML-related abbreviations in this perspective.

Abbreviations Definitions

NN Neural Networks

ANN Artificial Neural Network

CNN Convolution Neural Network

DNN Deep Neural Networks

BP-ANN Back Propagation Artificial Neural Network

SVC Support Vector Classification

SVR Support Vector Regression

MAML Model-Agnostic Meta-Learning

PLATIPUS Probabilistic LATent model for Incorporating
Priors and Uncertainty in few-Shot

SNOBFIT Stable Noisy Optimization by Branch and FIT

RL Reinforcement Learning

MAOSIC Materials Acceleration Operating System In Cloud

PLS Partial Least Squares

Magpie Materials Agnostic Platform for Informatics and Exploration

XGBR eXtreme Gradient Boosting Regression

SVMs Support Vector Machines

MAE Mean Absolute Error

RMSE Root Mean Square Error
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feature representations generally require an in-depth under-
standing of the target physical model and strict domain knowl-
edge. The algorithms serve as the kernel of the ML models and
are responsible for providing specific mathematical approaches
to handle the target task. Multiple algorithms are selected for dif-
ferent projects, such as decision trees, support vector machines
(SVMs), neural networks (NNs), etc;[35–37] 4) Run the learning
algorithm on the gathered training dataset to achieve an effective
ML model. For each training process, all the data in the training
dataset will be used to form an objective ML model. Although
more training data seems to be more conducive to generate mod-
els, a high proportion of training data also easily leads to an over-
fitting result. It is necessary to retain a part of the original dataset
as a validation set because an appropriate proportion of the vali-
dation set reflects the true performance of this targeted trained
ML model. The meaningful validation set generally requires at
least 10% contents of the original dataset and the validation data
values need to be distributed across the entire range of the values.
For the datasets with limited data amount, the proportion of the
validation set should be correspondingly higher to avoid the
inaccuracies caused by insufficient data during the validation
process. Hyperparameters should be adjusted before the begin-
ning of the training process to achieve the best predictive perfor-
mance of the ML model; 5) Test and evaluate the accuracy of the
trained ML model. In this step, the accuracy of the trained ML
model is reflected by its performance on the validation set.
Different algorithms usually have some unique evaluation crite-
ria parameters. For example, common evaluation parameters for
a linear regression ML model include mean absolute error
(MAE), root mean square error (RMSE), coefficient of determi-
nation (R2 score), and so on. Notably, due to the lack of sufficient
evaluation, the conclusions drawn from a ML model appear to
match the data can be flukes, leading researchers to misinterpret
the actual ability of this ML model. Therefore, to obtain a reliable
ML model, appropriate statistical model validation techniques

(e.g., cross-validation) should be used to test whether the corre-
sponding ML model is still applicable to the data array; and
6) Optimize the ML model to satisfy the required accuracy for
solving the target questions. For the trained ML models with
poor performance, it is necessary to find out the possible intrin-
sic reasons for the results based on the data characteristics and
then make the corresponding optimizations. To optimize the ML
model, the first three steps should be reconsidered, as shown by
the orange dashed lines in Figure 1. Unrealistic goals, insuffi-
cient data, and inappropriate feature representations as well as
algorithms all lead to poor performance of ML models. The
hyperparameters need to be redefined when the general settings
change before the training process. To avoid invalid testing, the
data used for testing should not overlap with the training set and
validation set. Notably, although the general flow of materials sci-
ence problems with ML techniques is similar, the exact ML
model training and generation involved in various situations
are still very different. Also, the impact of different steps on
various problems is specific. The feature engineering step has
a significant effect on those research objects possessing a strong
intrinsic association with the descriptors. Meanwhile, for
research objects that have a weak association-feature outcome,
the influences of the feature engineering step are limited.
Therefore, during the training process of ML applications,
professional domain knowledge is highly required to guarantee
efficient and accurate predictions.

3. Applying ML Techniques for Perovskite
Developments

3.1. Accelerating the Discovery of New Advanced Perovskite
Materials

As mentioned above, the expensive endeavor of traditional
trial-and-error methods to explore new materials limits the fast

Figure 1. Schematic representations of basic workflow for performing ML models in materials science to solve target issues. Orange dashed lines
indicate the parts that may need to be reconsidered during the ML model optimization process.
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growth of perovskite optoelectronics. In general, designing an
effective routine to predict whether an unknown compound
meets the target conditions requires strict domain knowledge.
This principle applies to both experimental and computational
exploration of new materials. The first challenge is the determi-
nation of the target criteria, and with the emergence of newmate-
rials and the improvement of domain knowledge, mathematical
criteria tend to becomemore complex and refined. Although con-
tributing to the accurate identification of unknown materials,
these developed criteria inevitably increase the amount of com-
putation, which slows the verification process of target materials
and hinders the discovery of new advanced materials.

The utilization of the strong predictive ability of ML techni-
ques has proven to be efficient assistance in the discovery of
new advanced materials. To explore more potential perovskite
materials with formula ABX3, a mathematical criterion of
“perovskites” should be proposed first before the analysis of
all candidate materials, because not all ABX3 stoichiometry are
perovskite structures. In early studies, the Goldschmidt tolerance
factor t usually plays the role in evaluating the formability and
stability of perovskites ABX3.

[38] At present, more developed fac-
tors, such as the formation energy and the energy beyond the
convex hull (Ehull), are used to evaluate the perovskite candidates
more accurately.[39] To avoid redundant computation and accel-
erate the evaluations of the thermodynamic stability for perov-
skite materials, Schmidt et al. developed a precisive ML model
for the predictions of Ehull of perovskite materials after training
20 000 samples.[40] This work first created a dataset consisting of
DFT calculations of about 250 000 cubic perovskite materials,
which includes all potential perovskite and antiperovskite crystals
produced with elements from hydrogen to bismuth, excluding
rare gases and lanthanides. Figure 2a displays the histogram
of the distribution of Ehull for all �250 000 cubic perovskite
materials. Other 230 000 possible ABX3 compounds were
tested and finally, 641 structures were considered as thermody-
namically stable candidates with low predicted
Ehull ≤ 5meV atom�1. Liu et al. also performed ML techniques
on the DFT database of 397 ABO3 compounds and realized
the classification of 891 possible structures based on the
predicted Ehull values.

[41] Before the training process, this study
first conducted effective feature engineering to develop the
performance of linear ML models. The initial 9 features have
been expanded to a maximum of 55 compound features and
finally 25 features to obtain the most relevant results. Figure 2b
visualizes the feature importance, which represents the relative
significance of each feature in a dataset for a predictive model. It
is found that the tolerance factor obviously dominates the
classification of perovskites and nonperovskites. This work
has successfully screened out 37 candidate perovskite
materials with stable thermodynamics (0meV atom�1< Ehull

< 36meV atom�1) for further synthesis and applications.
In addition to these representative works, many other studies

have also applied ML techniques to the predictions of bandgap
values (Eg) of perovskite materials, because Eg is a key index
reflecting the photoelectric conversion ability for optoelectronic
devices. Based on the support vector classification (SVC) and sup-
port vector regression (SVR) methods, Yang et al. proposed a two-
step ML strategy to realize the rapid discovery of narrow-bandgap

oxide double perovskites.[42] As shown in Figure 2c, the trained
SVC classifiers are used to narrow down the enormous DFT data-
sets of samples, and SVR regression is applied to predict the Eg

of candidate materials. As a result, 60 promising double perov-
skites for photovoltaic applications are screened out successfully
from 6,529 samples, in which 19 structures show considerable
photovoltaic potentials with excellent performance, which display
a range of Eg from 1.25 to 1.45 eV.

ML-guided autonomous experimentation is another trend to
enable the efficient exploration of advanced perovskite materials,
in which the algorithms will automatically iterate new experi-
mental contents based on the prior experimental databases with
little human intervention.[43–45] In one example of the ML-driven
autonomous experimentations, Shekar et al. determined the opti-
mal strategies to predict the growth of metal halide perovskite
crystals by applying the model-agnostic meta-learning (MAML)
model and the Probabilistic LATent model for Incorporating
Priors and Uncertainty in few-Shot learning (PLATIPUS)
approach.[46] Incorporating the 1,870 historical reactions con-
ducted with 19 different perovskite systems, the trained
MAML models realized the predictions of reaction compositions
in perovskite crystals and became more explainable for new
chemical systems. In the evaluation stage, three active learning
algorithms were tested by the prepared 20 experiments, and the
PLATIPUS algorithm showed the best predictive capabilities for
the new chemical systems. Li et al. also reported a solid approach
to discover the optically active CsPbBr3 nanocrystals through
autonomous intelligent systems.[47] They used the stable noisy
optimization by branch and fit (SNOBFIT)-based reinforcement
learning (RL) algorithm to optimize the corresponding parame-
ter space consisting of the reaction temperature and the precur-
sor concentrations. Supported by synthetic materials acceleration
operating system in the cloud (MAOSIC) platform, their cloud
experiments successfully detected the desired circular dichroism
(CD) signal of the target nanocrystal from 250 iterations. They
identified that the chiral origin of the synthesized nanoplates
comes from their unique structures and screw dislocations.
Another representative example is the work conducted by
Abdel-Latif et al., in which an ML-guided autonomous approach
for the synthesis of the lead halide perovskite (LHP) quantum
dots (QDs) was introduced.[48] In detail, the frequent operations
between the different but connected modules realized the auton-
omous acquisition of large-scale spectroscopic data in real time.
Using a pretraining stage with 200 experiments, the trained NN
model is able to adjust the peak emission energies in further
exploitation experiments. As a result, they combined the active
learning strategies and modular QDs synthesizer to realize
the autonomous and efficient exploration of desired LHP QDs
at the objective peak emission energy with a minimized
full-width-at-half-maximum (FWHM). With the advances in
autonomous experimentation strategies, these studies demon-
strate the ability of ML techniques to enhance the exploration
efficiency among material researchers for the new perovskites.

The guidance provided by a precisive ML model on the design
of perovskite optoelectronics is reliable, which is often validated
by actual experiments. Exemplified work includes a report from
Bak et al. have fabricated a more efficient Sn-based perovskite
solar cell following the ML suggestions than that of those
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perovskite materials prepared based on empirical experiences or
trials and errors[49] (Figure 3). Starting with the construction of
deep neural networks (DNN), this work has successfully trained
an accurate ML model with a limited amount of experimental
data (Figure 3a–c). Recommendations given by the ML algorithm
further facilitate the optimizations on designing perovskite-based
solar cells. Accordingly, the PCE of the fabricated device based on
ML suggestions reaches 5.57%, which is three times higher than
the average PCE of unguided devices at 1.72% (Figure 3g). Above
studies display the active assisting role of ML techniques in the
accelerating discovery of new materials. In fact, as the most

extensive application scenarios of ML techniques in the current
trend of materials science, this function of ML models has been
widely reported to be effective in actual experiments. However,
we notice that ML models used in perovskite optoelectronics
studies are limited in a small range, where the training is accom-
plished based on some common parameters such as bandgap Eg,
Ehull, and tolerance factor t, etc. The frequently repeated training
of similar datasets is not conducive to the further development of
ML techniques. For optoelectronics, optical properties, dielectric
constants, and phonon frequencies are also available parameters,
which are worthy of being learnt by MLmodels to explore specific

Figure 2. a) The histogram of the distribution for about 25 000 cubic perovskite structures. Reproduced with permission.[40] Copyright 2017, American
Chemical Society. b) The diagram represents feature importance. The rankings refer to the gradient boosting decision tree model. Reproduced with
permission.[41] Copyright 2020, Elsevier B.V. c) Brief workflow for material discovery based on CNN model. Reproduced with permission.[42]

Copyright 2021, Elsevier B.V.
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problems (e.g., the light–medium interactions). Until now, apply-
ing ML with these novel parameters in the designs of perovskite
materials still needs further research efforts in the future. With
these information, the long-term development of ML techniques
in helping to discover new advanced perovskite optoelectronics is
expected.

3.2. Improving the Interpretation of Underlying Mechanisms

During the investigations of perovskite materials, the underlying
mechanism for the structure–property relationship enables an
in-depth understanding of perovskite materials designs and opti-
mizations. However, for some specific optoelectronic properties,
the intrinsic mechanism for the performance is still unclear,
which hinders the rapid progress of perovskite materials develop-
ments. Although many different variables and parameters are
involved in ML, the correlation coefficients are an effective
measure to identify the association degree between the target
properties and labeled variables, which contains the essential
information of the structure–property correlations. For instance,
in the process of studying the reactivity of different amines on
the organic–inorganic hybrid perovskite films, Yu et al. achieved

the exploration of hidden trends from the experimental results of
correlation coefficients after extracting the feature importance
based on ML algorithms.[50] This work has pointed out the suit-
able types of amines that tend to have high compatibility with
perovskite films, including amines with fewer hydrogen bond
donors and acceptors, secondary and tertiary amines, and pyri-
dine derivatives. Moreover, to understand the relationship
between the electrical conductivity and the atomic properties
in perovskite oxides, Liu et al. studied the correlation between
the atomic parameters and the ionic conductivity of 117
perovskite oxide samples based on three ML algorithms: partial
least squares (PLS), back propagation artificial neural network
(BP-ANN), and SVR.[51] Combining the experimental data and
DFT calculation results, this research has found that the ratio
of O–O charge population to the O–O band length, which was
noted as P/L, has a quadratic curving relationship with the loga-
rithm of oxide ion conductivity in some undoped perovskite-type
oxides. Park et al. also addressed the impediment of lattice defor-
mation for the accurate predictions of perovskite bandgap by
investigating the correlation between the structural deformation
and bandgap values.[52] As shown in Figure 4a–e, this study
analyzed the influence of octahedral structural deformation on

Figure 3. A brief demonstration of accelerated design of high-efficiency Sn-based perovskite solar cell via ML. a,b) Schematic of the a) trained DNN ML
model and b) the suggested structure of the Sn-based perovskite solar cell. c) Radar graph representing the prediction accuracy of the DNN ML model for
different parameters. d–f ) Scatterplot of the recommendation results for each parameter d) Short-circuit current density (Jsc), e) open-circuit voltage (Voc),
and f ) fill factor (FF). g) Comparison of PCE between the ML-guided and unguided trials. h) Photograph and i) cross-sectional SEM image of the fabricated
perovskite-based solar cell based on the guidance of the ML model. Reproduced with permission.[49] Copyright 2022, Springer Nature.
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the bandgap predictions of hybrid perovskites and optimized an
accurate predictor accordingly. The 0.02 eV bandgap difference
observed in experimental samples is compatible with the change
in λ predicted by the ML model (Figure 4f–g), which
indicates that the bandgap increases upon dimethylammonium
(DMA) doping is due to the local octahedra distortions

rather than volumetric effects. These works indicate that the visu-
alized importance degrees of features not only guide feature
engineering for ML model optimization but also supply
innovative insights into the interpretation of the underlying
mechanisms among variables. Although current ML techniques
are still insufficient for the disclosure of associations between

Figure 4. ML-guided correlation investigations between structural deformation and bandgap predictions in hybrid perovskites. a) Representation set for
the octahedral deformation measurements of perovskites: λ, quadratic elongation of the octahedra; σ2, angle variance of the octahedra; and θ2, octahedral
rotation. b) Calculated correlation coefficients between different descriptors. c) Overall data distribution and fitted correlation between bandgap values
and structural deformation levels. d–e) Comparison of the predictive ability of the deep learning model trained e) with and d) without structural
parameters. f ) Experimentally observed and g) deep learning-calculated bandgaps of the mixed perovskites with the change of DMA concentration.
Reproduced with permission.[52] Copyright 2020, Elsevier B.V.
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variables, it still provides an opportunity for ML techniques to be
widely applied in revealing photophysical processes in optoelec-
tronic materials. More attempts and efforts are needed to further
expand the compatibility of ML techniques in this field.

3.3. Facilitating the High-Throughput processing of Large-Scale
information

Currently, the perovskite optoelectronic database tends to face
the problem of large-scale information processing. This phenom-
enon is mainly attributed to two reasons: the variety of perovskite
categories and the high-dimension space of perovskite parame-
ters. For the first issue, in brief, both organic and inorganic
perovskite materials have very diverse combinations of anions
and ions, and the combination possibilities will be further
increased if hybrid perovskites are considered. Accordingly,
the complex element composition and diverse structures span
the high-dimensional parameter space that defines perovskite
materials. In addition, automated experiments and diverse data-
bases enable rapid data acquisition in materials science. These
reasons cause the screening of desired materials to be in a
high-throughput fashion in the field of perovskite optoelectron-
ics. However, existing routines for processing large-scale
information require a considerable cost. The development of
emerging ML techniques provides opportunities for the high-
throughput processing of large-scale information that human
researchers are otherwise unable to deal with.

Based on the transfer learning method and a hybrid descriptor
set, Li et al. established a convolution neural network (CNN) ML
model and realized the high-throughput screening of stable
perovskite materials (Figure 5a).[53] The unannotated perovskite
materials obtained from DFT calculations datasets show high-
precision structural information, which have been labeled first
and used for the CNN model. The Materials Agnostic
Platform for Informatics and Exploration (Magpie) descriptors
have been applied in the training to get a generic screening
model without requirements of structural information. The
Magpie has included a large number of attributes to capture
the physical/chemical properties of materials with any number
of constituent elements. Transfer learning is able to improve the
new predictions based on the knowledge gained from previous
learning processes. Evidence proves that the trained CNN model
shows the best performances in formation energy predictions of
perovskites based on only composition information when com-
pared to the ElemNet model and several other ML models.
Finally, this work has successfully selected 625 potential candi-
dates with low tolerance factors from the 21 316 perovskite sam-
ples, 98 of which were proved to be stable by DFT calculations.
Similarly, Lu et al. developed a target-driven method combining
ML techniques and DFT calculations to predict undiscovered
hybrid organic–inorganic perovskites (HOIPs) for photovoltaics.
During the feature engineering process, 30 initial features were
analyzed, and the most 14 important ones are sorted out as an
optimal set. Taking 212 samples as the training set, two HOIPs
are screened out as potential photovoltaic materials with proper
bandgaps and robust environmental stabilities from the prelimi-
nary 5158 unexplored samples (Figure 5b–d).[54] Meanwhile, an

essential mapping of the close structure–property relationship in
bandgaps of HOIPs was established.

In addition, to screen target materials from large-scale
candidates, another utilization direction of the powerful high-
throughput capabilities in ML techniques is image recognition
in perovskite materials. For image recognition, its main task
is to correctly classify the category of image content through
the statistics of pixel distributions, colors, textures, and other
characteristics in the image. In deep learning, the image recog-
nition model not only performs its own task but also acts as a
parameter extraction network for other tasks in computer vision.

Undoubtedly, the transplantation of image recognition con-
cepts for research of perovskite optoelectronics will stimulate
a lot of meaningful work to enable the optimizations of both
structures and properties. To characterize the results of synthe-
sized perovskite single crystals, Kirman et al. developed an auto-
mated experimental characterization system based on image
recognition with the aid of CNNs.[55] Using an optimized ML
model to guide the sequence of ever-improved robotic synthetic
trials, this work is able to perform high-throughput syntheses of
perovskite single crystals with a protein crystallization robot. In
addition, this work also characterizes the outcomes with the help
of CNN-based image recognition. Following the predicted opti-
mal conditions for the synthesis of a new perovskite single crystal
by the trained ML model, the first synthesis of (3-PLA)2PbCl4 has
been achieved. Taherimakhsousi and colleagues also realized the
identification and quantification of a variety of defects in thin
films by applying ML.[56] To illustrate the applicability of the pro-
posed method in thin-film optimization, a specific CNN model
trained by experimental dark-field images has been applied to
resolve a 2D film morphology response surface in a set of experi-
ments where both film composition and processing were varied.
This approach automatically analyzes film morphologies in opti-
cal images and applies to multiple imaging conditions. The high-
throughput ability of ML is also used in time-series forecasting as
presented by Howard et al., who generated a 4 h time-series
predictions of humidity-dependent photoluminescence (PL) inten-
sity of perovskite thin film with <18% normalized RMSE
(Figure 5e–g).[57] These previous studies demonstrate the feasibility
of applying ML solutions to highly complex materials science
problems. Future ML techniques based on strong computing
powers and efficient algorithms are expected to enable fully
automated material screening, characterization of the synthesis
process, and stability testing, which may induce a new revolution
in materials engineering.

4. Future Opportunities and Challenges

4.1. Synergistic effect between ML and DFT calculations

Nowadays, DFT calculations have played an important role in the
exploration of various functional optoelectronic materials includ-
ing perovskites. Based on solid theory and reproducible settings,
DFT calculations supply sufficient information about the object
materials including the structural characteristics, electronic
structures, optical properties, vibrational properties, etc. These
valuable results contain the derivation of intrinsic nature and
are able to offer evident recommendations as the extension of
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Figure 5. Examples of high-throughput processing via ML models in the field of perovskite optoelectronics. a) Schematic of CNN construction for the
formation energy predictions of perovskites.[53] Reproduced with permission.[53] Copyright 2019, under the terms of CC-BY license, The Authors,
published by MDPI. b–d) High-throughput screening of stable photovoltaic perovskites.[54] b) Data visualization of training and test set. c) Predictive capa-
bility of the trainedMLmodel and d) the predicted bandgaps against tolerance factors of all candidate perovskites. Reproduced with permission.[54] Copyright
2018, under the terms of CC-BY license, The Authors, published by Springer Nature. e–g) Performance of ML models in time-series forecasting of per-
ovskites.[57] e) A brief demonstration of theMLmodel construction for time-series predictions. f–g) Performance of long short-termmemory (LSTM) network
on the test portion of the simulated degradation task. Reproduced with permission.[57] Copyright 2022, American Chemical Society.
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initial experiments. For the other aspect, as a data-driven technol-
ogy, ML greatly improves the efficiency of data use. Given suffi-
cient training data, ML is a powerful tool to achieve significant
enhancements in the analyses, simulations, and predictions of
optoelectronic properties for perovskite materials.[58] Through
the collection of experimental data in the previous literature, rep-
resentative datasets can be effectively constructed to support the
ML models. However, the generation of experimental data usu-
ally requires a long period, which induces a mismatch with the
fast data processing ability of ML models. This has hindered the
potential of ML techniques in boosting the research of perovskite
optoelectronics. In contrast, DFT calculations significantly accel-
erate the data acquisition of optoelectronic properties for perov-
skite materials and make it possible to establish a broad-range
dataset efficiently. The applications of ML models trained on
DFT computational data become new and competitive solutions
to optoelectronic problems in perovskite materials. Currently, the
synergies between ML techniques and DFT calculations have
been widely applied in the synthesis, screenings, and predictions
of perovskite optoelectronics.[59–61] The recent report from Gao
et al. has proposed a novel search strategy combining ML and
DFT calculations to screen 5,796 inorganic double perovskites.[60]

They carefully compared different ML models trained on various
algorithms to get the best predictive power. As shown in
Figure 6a, the eXtreme gradient boosting regression (XGBR)
algorithm yielded the best accuracy in the predictions of bandgap
when compared to the ANN and SVR algorithms. Two novel
lead-free inorganic double perovskites, Na2MgMnI6 and
K2NaInI6, were finally obtained, where the predicted bandgap
values and thermal stability are also confirmed by DFT
calculations. We believe that in-depth combinations between
ML techniques and DFT calculations will create seamless
pipeline strategies for designing more advanced optoelectronic
devices in the near future.

4.2. Identification of the Structure–Property correlation

The external optoelectronic behaviors of perovskite materials are
greatly affected by the lattice structures and morphologies
because the structural properties will determine the inner
light–electron interactions. Obviously, the elucidation of a
detailed correlation between structural and optoelectronic prop-
erties will benefit the design of structural characteristics to obtain
better optoelectronic performances. Currently, several studies
have proven the capability of ML algorithms in characterizing
subtle structural information and constructing possible correla-
tions through image recognition.[62–64] Malkiel et al. empirically
showed that a novel DNN trained with tens of thousands of
simulation trials from COMSOL simulations is capable of solv-
ing the inverse problem as well as retrieving subwavelength
dimensions only based on the far-field observations.[62] As shown
in Figure 6b, the trained DNN model based on synthetic experi-
ments has realized the automated design of a gold plasmonic
structure targeted to the dichloromethane with specific spectral
polarization responses. The configurations and dimensions of
the plasmonic structure are also found in this ML model.
This work supplies an effective method to obtain significant
information regarding optical elements with metasurfaces and

optimal nanostructures for designing the targeted chemicals
and biomolecules, enabling broad applications in different fields.
However, the robustness of these proposed methods still needs
more evaluations and verifications in different fields. On the
other hand, future optoelectronic materials may possess
more complicated structures and performances, which require
the facilitation of ML to enable accurate characterizations.
Therefore, the high-precision, high-resolution, and high-
throughput processing of ML technology is highly necessary
for developing promising perovskite materials in future research.

4.3. Construction of Benchmark Database

Effective databases are vital fundamentals for training ML mod-
els to solve corresponding problems. Current existing large data-
bases, such as Materials Project, contain integrated material
information and can be utilized in diverse ML scenarios.[65]

However, there are still two aspects of the database construction
that deserve the concerns of material researchers before the ML
model training. The first issue is the general quality of the col-
lected material data. Despite possessing impressive capabilities
of data analysis, ML models trained on low-quality data always
exhibit unsatisfied accuracy and are incapable of solving actual
questions. Here, low-quality data refers to data with large errors
and weak correlation with the target properties. The other aspect
is the data specificity regarding the specific objectives. Although
extracting useful data from integrated databases is necessary for
solving specific questions, there are no strict criteria for data
extraction, and material researchers can only rely on their self-
judgments based on domain knowledge. Therefore, the construc-
tion of benchmark databases with an in-depth understanding
and comprehensive domain knowledge for a small scope of
materials will set an example for the data repository and contrib-
ute to the unifying guidelines of ML techniques in specific mate-
rials field. In addition, material researchers are encouraged to
share their available databases in an open and reproducible
manner for the further reuse of digital resources. Continuous
collaborative actions are still required for the construction of
benchmark databases with findable, accessible, interoperable,
and reusable (FAIR) material data, which will enable the boosting
of the future materials community with no doubt.[66,67]

4.4. Establishment of Explainable Models for ML

The performances of the perovskite optoelectronic devices largely
depend on the intrinsic properties of the perovskite materials,
which is also the core part of explorations. However, the mech-
anisms of most current emerging ML models are unclear, espe-
cially deep learning models, which exhibit “black box” properties
for the predictions of target materials.[68] Such phenomena orig-
inated from the data-driven nature of the ML algorithms, which
makes it more difficult for researchers to understand and explain
the in-depth mechanisms or correlations behind the outputs pro-
posed by the ML models. In this scenario, the efforts for investi-
gating explainable ML models are valuable since it allows the
researchers to inspect the underlying mechanisms of ML to
achieve accurate predictions, which are particularly important
for rational design and optimizations of perovskite materials.
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Figure 6. a) Comparison diagram of bandgap prediction models based on different ML algorithms: XGBR, SVR, and ANN, from left to right, respectively.
Reproduced with permission.[60] Copyright 2021, Elsevier B.V. b) Predicted geometry of the nanostructure based on trained DNNmodel. The left diagram
displays the ML design of a gold plasmonic structure targeted to the organic molecule dichloromethane with specific spectral polarization responses. The
right diagram represents the configuration and dimensions of the plasmonic structure found by the DNN model. Reproduced with permission.[62]

Copyright 2018, under the terms of CC-BY license, The Authors, published by Springer Nature. c) Brief scheme of ML strategy used to interpret
the EXAFS. Reproduced with permission.[69] Copyright 2021, Wiley-VCH GmbH.
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In general, two main directions are considered to improve the
interpretabilities of ML models: improve the feedback path of
human experience during the training and increase the interac-
tive presentation of the ML model contents during the decision-
making process. Through the effective feedback path, profes-
sional domain knowledge is fed into the ML models. Such
human-in-the-loop ML models combine the advantages of
human and machine intelligence to better provide solid results
with high interpretabilities.[58] For the other aspect, ML models
also should actively provide more interactive information during
the training process to improve communications and feedback to
scientists. Common interactive information refers to visual and
readable descriptions, such as process diagrams, error warnings,
parameter explanations, etc. For instance, Bayesian deep learn-
ing is a new ML model to accurately quantify the prediction
uncertainties, which helps to avoid overfitting issues. These via-
ble approaches supply important insights into the “black boxes”
and improve the compatibility of ML models in diverse
situations.

4.5. Applications of ML in Spectral Image Processing

At present, the photoelectric performances of perovskite devices
are mostly based on experimental characterizations based on
spectral images. These spectral images provide indispensable
perspectives to analyze the light–matter interactions of functional
perovskite materials at the microscopic scale. An ideal optical
spectrometer should possess high spectral response, optical res-
olution, signal-to-noise ratio, stability, and operational conve-
nience. However, achieving highly robust characterization
performances with low costs in most optical spectrometers is still
challenging, which requires more efforts in the future to improve
the analysis of spectral images. Accordingly, image processing
becomes a promising technique to overcome current challenges
in spectrometers, which is one of the most fundamental func-
tions in ML. It has been verified that ML algorithms show good
performance in several specific fields of image processing such
as resolution enhancement, feature recognition, image recon-
struction, etc. For catalysts designs, Liu et al. successfully applied
supervised learning techniques to interpret the measured syn-
chrotron spectrum of Co single-atom catalysts (SACs)
(Figure 6c).[69] Based on the MD-extended X-ray absorption fine
structure (MD-EXAFS) calculations of Co–N-doped graphene
with different proportions of Co–4N–P, Co–2N–A, and
Co–2N–Z, the training of the NN model is accomplished by
including an input layer of the EXAFS spectrum. The highest
prediction consistency of local structural proportion from the
experimental EXAFS measurement is 63.94% for Co–4N–P.
The accurate extraction of structural information by ML confirms
that the improved hydrogen generation performances of the Co
SACs are induced by the edge effect. The comprehensive char-
acterization of the catalysts assisted by supervised learning offers
a new approach to obtain precise structural information on mate-
rials. Inspired by this work, trained ML models are capable of
upgrading current optical spectral analysis in accuracy, resolu-
tion, and processing rate based on powerful image processing
capabilities. Although spectral image processing has not
been widely used in perovskite materials, these contributions

further prove the assisting role of ML techniques in the field
of perovskite optoelectronics.

4.6. Improvements in Accuracy by Monitoring ML Models

ML models are generally trained with historical data, most of
which are obtained frommultiple experiments with different set-
tings, materials, and environments. These factors in experiments
will induce inevitable regular differences in the data distribution.
Therefore, a trained ML model is possible to become outdated in
a new environment and lose its accuracy over time, which is
attributed to the data drift effect.[70] To address the drift effect
and keep the accuracy of trained ML models, continuous moni-
toring and transfer learning are implemented to make ML mod-
els more robust to maintain accurate and reliable predictions in
different scenarios. The monitoring process allows us to evaluate
the performance of ML models during training and real-time
deployment, which guarantees the elimination of poor generali-
zation and changing parameters to realize the stability of predic-
tions. Meanwhile, the transfer learning uses the pretrained
models as the starting point, which optimizes the progress speed
and the performance of ML for the new training. For example,
the population stability index (PSI) is a model monitoring metric
measure, which compares the distribution of a categorical vari-
able in two different datasets. This method is an effective tool
used to examine distributional shifts for all model-related attrib-
utes.[71] In the field of perovskite optoelectronics, more learning
paradigms should be investigated to develop a proper criterion,
which helps to evaluate the characterization of data topology.
Correspondingly, although current promising ML techniques
are rapidly growing in materials science, we believe that more
monitoring strategies are needed against the generalization
errors induced by the degradation of ML models.

5. Conclusion

In conclusion, we highlight the current advances of ML
techniques in the development of perovskite optoelectronics
and summarize the future opportunities as well as challenges
in this perspective. Starting with a brief introduction of
ML-related concepts, we have presented a general workflow of
performing ML including: 1) identifying the object; 2) preparing
the dataset; 3) determining the feature representations and algo-
rithms; 4) training the ML model; 5) evaluating the accuracy; and
6) optimizing the ML model. The applications of ML models in
perovskite optoelectronics have achieved some progresses and
received continuous research attention. Accordingly, we have
discussed the examples of utilizing ML in developing novel
perovskite optoelectronics regarding the discovery of new
advanced perovskite materials, the interpretation of underlying
mechanisms, and the high-throughput processing of large-scale
information. Based on the strong predictive capabilities of ML,
the screening, discovery, and predictions of new advanced perov-
skite materials have been realized effectively in recent years.
With the accumulation of databases and the development of effi-
cient algorithms, future ML techniques are expected to signifi-
cantly accelerate the material evolutions in perovskite
optoelectronics. Meanwhile, ML is also able to quantify the
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relationship between different features of perovskites through
the correlation coefficients during the training process, which
allows ML models to discover and explains the underlying mech-
anisms of the structure–property relationship. In addition, the
high-throughput process for large-scale data in ML is not only
reflected in the screening of large databases but also in the rec-
ognition of images and the forecasting of time-series properties.
Taking advantages of these capabilities, ML algorithms are able
to process more complicated characterizations of perovskite opto-
electronics regarding the surface morphologies, optical spectra,
and spatial–temporal spectroscopies. In addition, we also discuss
the future potentials of ML techniques in the field of perovskite
optoelectronics explorations from six different aspects including:
1) synergistic effect between ML and DFT calculations; 2) identi-
fication of structure–property correlation; 3) construction of
benchmark database; 4) establishment of explainable models
for ML; 5) applications of ML in spectral image processing;
and 6) improvements in accuracy by monitoring ML models.

6. Outlook

According to the current trends, there is no doubt that ML tech-
niques will play an increasingly important role in the future of
materials science. However, some concerns and challenges still
need to be addressed properly to ensure the right direction of ML
development. The first issue is the reliability of ML models,
which includes not only the model accuracy but also the compat-
ibility and robustness. The most efficient way to improve the
reliability of ML models is to construct benchmark databases
and corresponding monitoring systems. Benchmark databases
fed with professional domain knowledge ensure that the trained
ML model is consistent with the true model to ensure good com-
patibility. Monitoring systems further avoid data drift and
improve the sustainability of original ML models. Continuous
updating and correction of ML models is the basis for maintain-
ing prediction reliability. Another issue is the interpretability of
comprehensive ML models, where many models have poor
interpretability for the output results. Although researchers eas-
ily obtain accurate output from ML models, the decision-making
process is unclear. Such a “black box” effect will hinder the com-
munications between human and machine intelligence, which is
not conducive to the long-term development of ML technology.
In this aspect, effective feedback paths and interactive presenta-
tions should be implemented in ML models to solve this chal-
lenge. In the big picture, ML technology still has significant
development potential in crossdisciplinary fields of materials
science, where the synergies with theoretical calculations, spec-
tral image processing, and characterization of structural–
optoelectronic correlation open up new directions for ML devel-
opment in the future. Therefore, the applications of ML offer
promising design and optimization strategies to accelerate the
development of next-generation perovskite optoelectronics,
which further brings current materials science into a new stage.
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