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Abstract A gold film with subwavelength nanoholes on a
glass substrate was fabricated through electron beam
lithography and its extraordinary optical transmission
(EOT) was characterized. By applying a liquid crystal
overlayer to the gold film, its EOT can be further enhanced
by ~11% due to the refractive index matching of the
dielectric media on its two sides. By controlling the
alignment of the liquid crystal molecules, a highly
reversible and reproducible tuning of the transmission peak
in both intensity and position is demonstrated.
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Introduction

The discovery of extraordinary optical transmission (EOT)
through a metal film perforated with two-dimensional
nanohole arrays has attracted intense attention since it was
first reported in 1998 [1]. Different physical models have
been proposed to explain the unusual transmission enhance-
ment, such as surface plasmon polariton (SPP) models [1–3],
composite diffracted evanescent wave models [4, 5],
dynamical diffraction [6], waveguide mode [7], and cavity
resonances [8]. Though the mechanism for the transmission
enhancement is still under debate, researchers have found
that the EOT in visible, near infrared, and terahertz range is

sensitive to many physical and geometrical parameters
including the film material [9–11], film thickness [12–14],
geometry symmetry [15–19], lattice constant [16, 20–23],
as well as hole size [20, 24–27] and hole shape [28–32].
This provides us with many degrees of freedom for the
manipulation of light propagation. EOT has great potential
for many applications such as organic light-emitting diodes
[33], nanolithography [34], color filters [35], and sensors
[36].

The evanescent nature of the SPPs makes them
extremely sensitive to dielectric properties of the surrounding
material in the vicinity of the metal surface. As a result,
changing the dielectric properties of a material in contact with
the metallic nanohole array will lead to a change in the
transmission spectrum. Various approaches have been ex-
plored to control the SPP dispersion and subsequent optical
transmission based on different materials, such as liquid
crystals (LCs) [37–39] and J-aggregates [40]. However, J-
aggregates-based systems tend to be unstable after repeated
switching due to the photo-induced decay. In contrast, LC-
based systems are much more stable with acceptable
response and high fidelity but only based on nematic LCs
with positive dielectric anisotropy. To further strengthen their
potential in plasmonic applications, it is therefore highly
desirable to explore other types of LCs, for instance, dual-
frequency LCs.

In this letter, we demonstrate a hybrid system with
enhanced EOT by applying a nematic dual-frequency liquid
crystal (DFLC) to a uniform Au nanohole array. Such a
DFLC can change the sign of dielectric anisotropy between
positive and negative when the frequency of the applied
electric field changes [41–44], thus changing the EOT of
the hybrid system. By overlaying the DFLC onto the Au
nanohole array, we achieved ~11% enhancement in trans-
mittance compared to the bare Au nanohole array. In
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addition, the EOT can be frequency tuned by electrically
controlling the alignment of the DFLC molecules.

Simulation and Experiments

Figure 1a shows the schematic diagram of a gold nanohole
array patterned on an indium-tin-oxide (ITO) glass substrate.
The structural parameters related to the device are denoted as:
Λ for the pitch of the grating, L and W for the length and
width of each rectangular hole, G1 and G2 for the width of
metal stripes in between two adjacent aperture holes along
x- and y-directions, and H for the grating height. Here, Λ is
shorter than the optical wavelength (450−750 nm).

The proposed device was theoretically analyzed using
the rigorous coupled wave analysis method [45]. The
dispersion information associated with the Au was derived
from the fitting of tabulated data [46]. The glass substrate
was assumed to possess a constant refractive index of 1.52
with negligible optical loss in the interested wavelength
range. The wavelength-dependent refractive index of ITO
was deduced from the fitting of experimental data [47]. The
nanohole height was set to be the same as the thickness of
the metal layer throughout this work.

In our experiments, the highly ordered gold nanohole
array on an ITO glass substrate was fabricated based on the
standard e-beam lithography. In brief, a 250-nm-thick
e-beam resist (PMMA 950k) was spin coated on the pre-
treated ITO glass substrate, followed by 15 min baking at
170 °C. After e-beam exposure, the patterns were then
developed in n-amyl acetate at 20 °C for 3 min, followed
by immersing into methyl isobutyl ketone: isopropanol

(IPA)=1:3 solvent for 70 s and rinsing in IPA for 30 s. After
O2 plasma descum, a chromium adhesion layer (5 nm) and
a gold layer (50 nm) were subsequently deposited in
vacuum over the pattern. Finally, a well-patterned gold
nanohole array on the ITO glass substrate was produced by
removing the resist in Acetone solution.

A field emission scanning electron microscope (SEM)
image of the fabricated nanohole array is shown in Fig. 1b,
from which the aforementioned parameters are determined:
Λ=320 nm, L=180 nm, W=160 nm, G1=140 nm, G2=
160 nm. The whole working area of the Au nanohole array
is 3.5×3.5 mm2.

A monolayer of hexadecyl trimethyl ammonium bro-
mide [48] was self-assembled on both the bare ITO glass
substrate and the substrate with Au nanohole array. These
two substrates, serving as electrodes, were assembled
together to form a LC cell. The cell thickness was
controlled to be ~2 μm using the polystyrene microbeads.
After injection of LCs, the homeotropic alignment of LCs
was achieved: LC molecules align perpendicular to the
substrates. The DFLC material used was MLC-2048
(Merck), which has the positive sign of dielectric anisotro-
py,Δ" ¼ "== � "? > 0, when the frequency f of the applied
electric field smaller than the crossover frequency fc=
12 kHz (at 20 °C) and a negative sign, Δε<0, when f> fc
[49]. Here, ε// and ε⊥ are the dielectric permittivities of the
DFLCs in the directions parallel and perpendicular to the
LC director, respectively. For LCs with Δε>0, the director
prefers to align toward the electric field direction; while for
Δε<0, it realigns perpendicularly to the field. Figure 1c
and d shows the schematic drawings of the alignment of
DFLC molecules when they are completely switched at the
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Fig. 1 Schematic of subwave-
length patterned gold nanohole
structures (a), SEM image of an
Au nanohole array on an ITO
glass substrate (b), and revers-
ible switching between
the homeotropic (c) and
homogeneous (d) alignment
of DFLC molecules.
(Color online)
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frequency below and above the crossover frequency,
respectively. For the DFLCs used in this experiment, it
has an ordinary refractive index no=1.4978 and an
extraordinary refractive index ne=1.7192, giving an optical
birefringence of Δn=0.2214 (all at 1=589 nm).

Optical transmission spectra were measured with an
unpolarized probe light beam using a UV-Vis-NIR
microspectrophotometer (CRAIC QDI 2010™). The
probe light beam was focused to have a detecting area
of 31×31 μm2 using an objective lens. It is worth
mentioning that due to the limitation of the spectropho-
tometer, the spectrum can be only measured for unpolar-
ized probe light in our experiments.

Results and Discussion

Figure 2a and b shows the calculated and tested transmit-
tance spectra for a continuous Au film and Au nanohole
structure with and without DFLC overlayer for normally
incident unpolarized light. From Fig. 2, it is obvious that
there exists a transmission peak at ~500 nm for the
continuous Au film, which results from the electrons
transition and recombination between the filled d-bands
and the Fermi level in conduction band [50–52]. It is noted
that this peak is present in all of our spectra, independent of
structure properties and overlaying materials. This observa-
tion indicates that the light coupling with surface plasmons
induced by the periodic nanoholes is not a dominant factor for
the transmission characteristics at ~500 nm. In contrast, a
pronounced transmission peak at ~690 nm appears in the
perforated Au nanohole film in addition to the same
transmission peak at ~500 nm as the continuous Au film.
This transmission peak is a result of light coupling with the
surface plasmons along the nanohole array structure. Interest-
ingly, a trough with the dip position at ~590 nm also appears
between two transmission peaks, which can be attributed
to the localized surface plasmon resonance. When a
DFLC overlayer is applied on the perforated one, we can
observe from both simulation and experimental results
that the d-bands transmission peak at ~500 nm does not
shift while both the peak and trough induced by surface
plasmons have red shifts. It is well known that periodic
arrays can provide the additional momentum required to
couple incoming light to SPPs; in a square array of
nanoholes the peak positions can be approximately
est imated as lmax ¼ Λ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x þ n2y

q� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"d"m= "d þ "mð Þp

[22], where εd and εm are the dielectric function of the
dielectric and the metal, respectively, Λ is the lattice constant
of the array, and nx and ny are integers. From the equation,
only εd changes from εair to εLC in our experiment when the
DFLC overlayer is applied on the gold nanohole array. By
substituting the dielectric constants of the dielectric and

metal into this equation, the resulting lmax gets red-shifted.
Therefore, we can see from Fig. 2 that the transmission peak
has a shift of ~104 nm (from ~724 to ~828 nm) in the
theoretical calculation and a shift of ~120 nm (from ~690
to ~810 nm) in the measured spectrum, while the trough has
a theoretical shift of ~47 nm (from ~610 to ~657 nm) and an
experimental shift of ~70 nm (from ~590 to ~660 nm). More
importantly, the transmittance of both peaks increases greatly
by applying the DFLC overlayer but the peak at ~810 nm
has much higher transmission than the one at ~500 nm. The
theoretical and experimental peak transmittance is enhanced
by ~9% and ~11% compared to the bare case. We believe
that the application of the DFLC overlayer to the perforated
metal layer leads to an index matching of the media on both
sides of it, thus further boosting the optical transmission.
From Fig. 2a–b, we also note that the peak to trough depth
from the theoretical calculation is much larger than that from
the experimental results. This difference was attributed to the
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Fig. 2 Simulated (a) and experimental (b) results of the transmittance
for a continuous Au film and Au nanohole structures with and without
DFLC overlayer (homeotropic alignment) for normally incident
unploarized light. (Color online)
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scattering caused by the LC layer. Under a polarized optical
scope, we observed that there existed many defect-induced
LC domains inside the LC layer, which caused relatively
strong scattering and hence decreased the transmittance of
this hybrid system. It is worth noting that the nanoholes are
assumed to be rectangular in theoretical calculation, while
their four corners are not really sharp from the SEM image,
thus resulting in slight difference between the theoretical
calculation and experimental data.

Figure 3a and b show the voltage-dependent transmit-
tance spectra when the frequency was fixed at 1 and
22 kHz, respectively. When a low-frequency (f=1 kHz)
electric field is applied to the cell, the LC molecules with
Δε>0 are aligned more orderly (perpendicular to the
substrates). In this case, regardless of the polarization of
the probe light, it will only see the ordinary refractive
index, no, of the DFLCs. However, we believe that the LC
molecules in the nanoholes are independent of external

electric field due to the strong anchoring energy of the
nanoholes and also demonstrate an isotropic state: niso ffi
2no þ neð Þ 3= ¼ 1:5716 [53]. There is therefore a slight
decrease in transmittance caused mainly by more ordered
alignment of the positive anisotropic molecules by the
applied field (Fig. 3a). When a high-frequency (f=22 kHz)
voltage is applied, the DFLC exhibits a negative dielectric
anisotropy (Δε<0). As the applied voltage increases, the
LC molecules are switched into horizontal alignment, as
illustrated in Fig. 3b. Although the LC domains are
perpendicular to the electric field, they may rotate within
the plane. Statistically, an unpolarized incoming beam will
see an average of the ordinary and extraordinary indices.
Therefore, the effective refractive index at a high frequency
can be written as nhf ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn2o þ n2eÞ=2
p ¼ 1:6123, which is

larger than that of the homeotropic alignment. Consequently,
the transmission peak and trough are slightly red-shifted. In
addition, there is a dramatic decrease in the peak transmit-
tance (from ~28% to ~15%). In our experiments, we
observed that there were many LC domains formed under
the applied electric field with high frequency, which caused
strong scattering of the incoming light. As a result, the
transmittance of the hybrid system in the whole spectral
range has an obvious decrease.

For LC-based systems, a distinct advantage is that their
optical properties can be dynamically controlled. In our
experiments, reversible tuning of the transmission was
achieved by manually switching the electric field on and off
at the fixed frequency of 22 kHz using an He–Ne laser
(633 nm). The dynamic transmission change was captured
by an oscilloscope. Figure 4 shows the response time of this
DFLC-based hybrid system at the applied voltage of 16 V.
The measured rising time and falling time are ~60 ms
and ~270 ms, respectively. Huang et al. [54] have reported
that the rising time τon and falling time τoff of the DFLC-
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Fig. 3 Voltage-dependent transmittance spectra with the frequency
fixed at 1 kHz (a) and 22 kHz (b), respectively. (Color online)
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Fig. 4 Dynamic response under the applied voltage of 16 V with the
frequency of 22 kHz. (Color online)

662 Plasmonics (2011) 6:659–664



based device driven by relatively high voltages can be written
as ton ¼ g1d

2 "0 Δ"j jV 2 � keffp2ð Þ� ffi g1 "0 Δ"j jE2ð Þ�
and

toff ¼ g1d
2 keffp2ð Þ�

, where d is the cell thickness, γ1 is
the viscosity, keff is the effective elastic constant, and E is the
applied electric field. We can see that the rising time is
inversely proportional to E2 while the falling time is a self-
relaxation process, depending on the material intrinsic
properties. Faster response time can be achieved by using
specially designed driving electrodes [55]. The observed
dynamic response of the transmission under the applied
electric field indicates that the hybrid system is highly
reversible and reproducible.

Conclusion

We have fabricated a gold film with subwavelength
nanohole arrays on an ITO glass substrate and observed
EOT at ~690 nm. By overlaying a DFLC layer to the gold
nanohole array, the EOTcan be further enhanced by ~11% due
to index matching. Since the alignment of the DFLC
molecules can be efficiently controlled by the frequency of
applied electric field, the tuning behavior of the transmission
peak in both intensity and position is highly reversible and
reproducible. Our future work will be further improving the
performance by optimizing its structural parameters, such as
the metal thickness and the duty ratio, and investigating
different nanohole shapes on the EOT, such as circles and
triangles. This DFLC-based subwavelength patterned metallic
structures can be potentially used inmany applications such as
switches, lenses, and color filters.
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