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By combining different plasmonic nanostructures with conventional sensing configurations, chemical/biosensors with significantly
enhanced device performance can be achieved. The fast development of plasmon-assisted devices benefits from the advance of
nanofabrication technology. In this review, we first briefly show the experimental configurations for testing plasmon enhanced
sensing signals and then summarize the classic nanogeometries which are extensively used in sensing applications. By design,
dramatic increment of optical signals can be obtained and further applied to gas, refractive index and liquid sensing.

1. Introduction

The rapid development of plasmonics [1–3] and plasmon-
related devices [4–12] paves the way for controlling electro-
magnetic waves at the nanoscale. The coherent free electron
excitations (i.e., surface plasmon resonances, SPRs) which
exist at the metal/dielectric interfaces are normally generated
by illuminating light to metallic or metallic-dielectric hybrid
structures. As yet, various plasmon-assisted optical com-
ponents have been conceived and experimentally demon-
strated, including waveguides [13–19], photon sorters [20–
22], absorbers [23–25], color filters [26–28], and switches
[29, 30]. SPR based optical sensors [31–56] are another
important research field since they have found numerous
useful applications in detecting and characterizing chemical
and biological molecules.

It is well known that surface plasmons can propagate
along the metal-dielectric interface from tens to hundreds
of microns and decay evanescently in the vertical direction.
Based on the fact that SPR is sensitive and highly depen-
dent on the dielectric environment, the shift of resonance
in optical spectrum can be used to quantify the change
of surrounding medium since analyte can interact with
electromagnetic waves which are tightly confined on the
structure surface. Note that nonpropagating plasmons are
also useful for sensing applications due to greatly enhanced
field intensity at the resonance (localized surface plasmon
resonance, LSPR) due to collective oscillations. Here, we first
briefly retrospect the classical experimental configurations
for plasmon-enhanced sensing and then summarize typical
designs that can remarkably strengthen the optical signal.
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Figure 1: (a) Schematic showing the Kretschmann configuration for surface plasmon excitation. (b) Grating can also provide additional
wave vector components and therefore assist the conversion from incident light into surface plasmon waves. (c) Schematic diagram showing
Kretschmann configuration conventionally employed for coupling incident radiation to surface plasmons with a thin layer of molecules on
the metal surface. (d) Narrow groove plasmonic grating structures illustrating the important dimensions and parameters. The incident and
reflected radiation are indicated by symbols “𝐼” and “𝑅,” respectively. (a)-(b) and (c)-(d) are adapted from [57, 58], respectively. (a)-(b):
Copyright 2014, Multidisciplinary Digital Publishing Institute. (c)-(d): Copyright 2011, Optical Society of America.

The sensing effect will be reviewed both theoretically and
experimentally.

2. Configurations of SPR-Assisted Sensing

Figure 1(a) illustrates the classic Kretschmann configuration
[57] which is most frequently applied to excite SPR. A prism
is normally used to match the wave vectors between surface
plasmons and the incident light. Alternatively, patterned
structures (e.g., gratings) can also be employed to generate
surface plasmons, as shown in Figure 1(b). Additional wave
vectors are offered by patterned structures which further help
convert the incident light to surface plasmon waves.

To take advantage of the unique properties of SPR, one
needs to combine the analyte with experimental setup which
can excite surface plasmons. This can be realized by cover-
ing the metal surface with a thin layer of molecules [58],
as illustrated in Figure 1(c). More complicatedly, complex
designs of nanostructures with well-aligned arrays can be

utilized to further generate optical response at different
frequency bands. Analyte tightly adhered to patterns (e.g.,
nanotrenches) as shown in Figure 1(d) interacts with excited
SPR and produces detectable resonance shift in the spectrum.

3. Plasmonic Nanostructures for
Enhanced Sensing Applications

Avariety of patterningmethods have beendeveloped to fabri-
cate nanostructures which can be further used for enhancing
the serviceable signals. Typically, two different processes
are categorized: top-down and bottom-up fabrication tech-
niques. The former includes focused ion beam (FIB) milling
[59–62], electron-beam lithography (EBL) [63–67], nanoim-
print [68–71], and interference lithography [72–75]. Various
plasmonic designs have been demonstrated to enhance the
sensing effect. Figure 2 shows typical structures including
1D nanogratings (Figure 2(a)), 2D nanodots (Figure 2(b)),
nanoholes (Figure 2(c)), and nanomushrooms (Figure 2(d)).
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Figure 2: SEM images showing four different plasmonic nanodesigns. (a) SEM image of 1D nanogratings patterned on a silver film with
420 nm period and 110 nm slit-width. The inset illustrates the schematic cross section of the nanogratings on a glass substrate. (b) Top-view
SEM image of a nanodisk array with 500 nm periodicity. The inset is the oblique view of the disks. (c) Top-view SEM image of a nanohole
array. (d) Oblique view of nanomushrooms fabricated by interference lithography and thermal evaporation. Scale bars in (b) and (d) represent
300 nm and 200 nm, respectively. (a), (b), (c), (d) are successively adapted from [76–79]. (a): Copyright 2014, American Institute of Physics.
(b): Copyright 2014, Elsevier. (c): Copyright 2014, American Institute of Physics. (d): Copyright 2013, Nature Publishing Group.

FIB milling was applied to fabricate the nanogratings illus-
trated in Figure 2(a) [76]. One can see that the sidewalls are
not completely straight, which is caused by material rede-
position during milling. Although the redeposition effect is
almost inevitable in all ion-involved milling processes, it is
still possible to minimize the effect and obtain a smooth
surface under optimized conditions. Large area 2D nanorods
[77] and nanoholes [78] shown in Figures 2(b) and 2(c) were
fabricated by interference lithography. Note that either lift-off
or etching is needed to transfer patterns from resists to target
materials using interference lithography to define patterns,
which is different from direct FIB drilling. It is also worth
mentioning that the cross sections of the fabricated structures
may not present vertical sidewalls, as illustrated in the inset of
Figure 2(b). Using interference lithography followed by ther-
mal evaporation, nanomushrooms (gold caps on photoresist
pillars) [79] shown in Figure 2(d) were obtained on a quartz
substrate. One can also observe fabrication imperfections
from the SEM image.

Except for the regular structures (well-aligned arrays)
discussed above, various designs with irregular shapes have
also been reported. As shown in Figures 3(a) and 3(b),

gold nanoislands [80, 81] were constructed by evaporation
followed by annealing, which can be used for chemical/
biosensing in the transmission localized surface plasmon
resonance (LSPR)mode.The structure in Figure 3(c) consists
of a cross and a bar [82]. Such a hybrid using an “X” and “I”
shaped particles can generate Fano resonance caused by two
relevant modes which are known as bonding mode (super-
radiant mode) and antibonding mode (subradiant mode).
This nanoresonator can be applied in sensing applications
since coherent coupling of bright and dark plasmon modes
in this hybrid system is expected to produce Fano inter-
ference with high quality factors. Using nanoporous anodic
alumina oxide (AAO) as templates, bimetallic (gold core with
palladium shell) nanorod metamaterials with high aspect
ratios [83] were fabricated using a self-organization tech-
nique (Figure 3(d)), which can find important applications in
hydrogen gas sensing.

The key factor for strengthening the optical signals is the
electric field enhancement assisted by plasmonic nanostruc-
tures.This has been extensively verified both theoretically and
experimentally. As illustrated in Figure 4, near field incre-
ment generated by plasmonic nanostructures is obvious.
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Figure 3: (a) and (b) SEM image of gold nanoislands fabricated by evaporation and annealing. (c) SEM image of a hybrid structure of X and
I shaped particles. (d) SEM image of nanorods with high aspect ratios. Scale bar in (c), 100 nm. (a), (b), (c), (d) are adapted from [80–83],
respectively. (a): Copyright 2007, American Chemical Society. (b): Copyright 2011, American Chemical Society. (c): Copyright 2011, American
Chemical Society. (d): Copyright 2014, Wiley.

By using different designs (e.g., nanocube particles and nano-
hole cavities) significantly increased near field intensity can
be achieved. Enhanced electromagnetic fields are verified
using finite difference time domain (FDTD) calculations. In
Figures 4(a) and 4(b), one can see that different field inten-
sity distributions are observed for different resonance modes
(peaks) in scattering spectrum when a cubic silver particle is
in contact with a dielectric substrate [84].The silver cubewith
90 nm length of side is supported by a glass substrate.

Since the dependence of field distribution can be either
on the top of the particle (Figure 4(a)) or on the substrate
(Figure 4(b)), one can apply this dependency to enhance the
detecting signals for different kinds of analytes. The field
distribution in Figure 4(c) demonstrates the enhancement
effect using classic nanohole structures [85]. Exosomes sup-
ported by the nanohole plasmonic structures are thus sensed
with larger signals. Since the typical size of exosomes is
from 50 nm to 100 nm in diameter (the diameter and period
of the hole array are 200 nm and 450 nm, resp.), increased
electromagnetic fields are confined in this range. Still using
the classic nanohole arrays (200 nm diameter and 600 nm
periodicity), Cetin et al. demonstrated a plasmonic on-chip
sensing platform [86] by covering a thin protein layer on the
sample surface.

Quantitative detection of biomolecules with a wide range
of concentrations (from 3.9𝜇g/mL to 1000 𝜇g/mL) is thus

realized as shown in Figure 5(a). Spectral response (normal-
ized transmission) reveals that the resonance peak redshifts
with increasing concentrations. Liu and coworkers proposed
a perfect absorber [87] using a thin layer of plasmonic
nanodisks and further demonstrated its sensing application.
Blueshift of resonance dips in the reflectance spectrum as a
function of frequency was realized, as shown in Figure 5(b).
More importantly, multispectral sensing can also be achieved
by using proper plasmonic designs. A hexagonal cross-
shaped nanocavity array [88] was proposed and theoretically
demonstrated to achieve narrowband near-unity absorption
for sensing applications, as shown in Figure 5(c). We can see
that the shift of resonance peaks in absorption spectrum is
obvious for very small refractive index variation (1.000 to
1.040 with only 0.005 increments) from Figure 5(c), which
is potentially useful for detecting flammable gases and even
poisonous materials [88]. Sensitivities of 448, 504, 538, and
564 nm/RIU (from left to right) for the four resonance peaks
are obtained, respectively.

Moreover, much higher sensitivity and figure of merit
(near to the theoretical limit) have also been experimentally
demonstrated using the nanomushrooms shown in
Figure 2(d). As shown in Figure 6(a), the resonance dips in
reflectance show distinct redshift with larger refractive
indices [79]. For clarity, dips are normalized and replotted
in Figure 6(b). 1015 nm/RIU and 80–108 figures of merit are
determined.
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Figure 4: (a) and (b) The field intensities at different resonance peaks of a single silver nanocube in contact with a glass substrate. (c) The
near field distribution showing enhanced electromagnetic fields tightly confined near a periodic nanohole surface. One can see that the field
distribution overlaps with the size of exosomes captured onto the sensing surface. (a)-(b) and (c) are adapted from [84, 85], respectively.
(a)-(b): Copyright 2005, American Chemical Society. (c): Copyright 2014, Nature Publishing Group.

4. Conclusions and Outlook

In summary, we have reviewed the typical sensing platforms
using plasmonic designs with various nanostructures. By
covering analytes on a sample surface, functional sensorswith
high performance (refractive index sensitivity and figure of
merit) can be readily obtained since the electromagnetic field
is dramatically enhanced at plasmon resonances. Different
geometries (both well-aligned arrays and patterns with arbi-
trary shapes) can be utilized to actualize the enhanced sensing
effect. Ultrahigh sensitivities enable various applications in
a wide range of research domains. Since higher sensitivity

and faster respond speed are always desired, future plasmonic
sensors need ultrasensitive and ultrahigh speed performance.
Moreover, sensing devices with high throughput and scal-
able detection are essential by combining plasmonics with
microfluidics.

Graphene-related sensors [89–91] are emerging devices
which have great potential and important applications. A
graphene-MoS

2
hybrid sensor [89] and an incident-angle

tunable graphene-plasmonic sensor [90] are demonstrated
most recently. The proposed graphene-MoS

2
hybrid sensor

has a huge phase-sensitivity enhancement compared with the
SPR sensing scheme with only graphene coating since MoS

2
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Figure 5: (a) Spectral response of the plasmonic sensors functionalized with different protein IgG concentrations ranging from 3.9 𝜇g/mL to
1000 𝜇g/mL. (b) Reflectance spectra of an absorber sensor designed for water as reference medium. (c) Absorption spectra of the plasmonic
nanostructure under a low refractive index environment. (a), (b), (c) are adapted from [86–88], respectively. (a): Copyright 2014, Nature
Publishing Group. (b): Copyright 2010, American Chemical Society. (c): Copyright 2014, American Institute of Physics.
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Figure 6: (a) Reflectance spectra of the gold mushroom array immersed in glycerine-water mixture solutions with varying compositions at
the incidence angle of 33.3∘. (b) Normalized reflectance for D1 in the spectral region indicated with the dashed box. (a) and (b) are adapted
from [79]. (a)-(b): Copyright 2013, Nature Publishing Group.

has high absorption efficiency. For the incident-angle tunable
graphene-plasmonic sensor, a TM-polarized light is needed
to illuminate the structure beyond the critical angle with the
help of a prism. Graphene has unsubstituted advantages such
as high electronic mobility, large specific surface area, and
preponderance of exposed edge planes to greatly increase
charge storage and universal optical conductivity from visible

to infrared frequencies and it has found tremendous applica-
tion and great potential in composing bio/chemosensors.
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