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Textbooks and References
Textbooks

Thomas M. Cover, Joy A. Thomas, Elements of Information Theory,
2nd Edition, Wiley-Interscience, 2006.
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Textbooks and References

Textbooks

Thomas M. Cover, Joy A. Thomas, Elements of Information Theory,
1st Edition, Tsinghua Unviersity Press, 2003.
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Assessment

• Quiz: starts from the 3rd week, open book, around 10min, almost
every week.

• Homework: starts from the 2nd week, every week, submits to BB.

• Project: report + Matlab simulation (if necessary).

• Final Exam.
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Policy Reminders

Academic dishonesty consists of misrepresentation by deception or by
other fraudulent means and can result in serious consequences, e.g. the
grade of zero on an assignment, loss of credit with a notation on the
transcript (“Grade of F assigned for academic dishonesty”).
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Note to You

These lecture notes are a perpetual work in progress. Please report
any typo or other errors by email. Thanks!

We try to prepare there lecture notes carefully, but they are NOT
intended to replace the textbook.

For more information, please refer to BB or
eee.sustech.edu.cn/p/wangrui.

Office hours and tutorials: discuss with TAs in QQ group (101147374)
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A Brief History *

1877 - Showed that thermodynamic
entropy is related to the statistical
distribution of molecular
configurations, with increasing entropy
corresponding to increasing
randomness.

S = kB logW (1)

where W = N!
∏
i

1

Ni !
.

Ludwig Boltzman
(1844-1906)
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A Brief History

1924 - Nyquist rate and reconstruction
of bandlimited signals from their
samples. Also stated formula
R = K logm, where R is the rate of
transmission, K is a measure of the
number of symbols per second and m
is the number of message amplitudes
available. Amount of information that
can be transmitted is proportional to
the product of bandwidth and time of
transmission.

Harry Nyquist
(1889-1976)
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A Brief History

1928 - (inventor of the oscillator ) - in
the paper entitled “Transmission of
Information” proposed formula
H = nlogs, where H is the
“information” of the message, s is the
number of possible symbols, n is the
length of the message in symbols.

Ralph V. L. Hartley
(1888-1970)
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A Brief History

1938 - In his Master’s thesis A Symbolic
Analysis of Relay and Switching Circuits at
MIT, he demonstrated that electrical
application of Boolean algebra could
construct and resolve any logical, numerical
relationship.

Claude E. Shannon
(Apr. 30, 1916 - Feb. 24, 2001)

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 7, 2021 10 / 55



A Brief History

1938 - In his Master’s thesis A Symbolic Anal-
ysis of Relay and Switching Circuits at MIT,
he demonstrated that electrical application of
Boolean algebra could construct and resolve
any logical, numerical relationship.

“possibly the most important, and also the
most famous, master’s thesis of the century.”

Claude E. Shannon
(Apr. 30, 1916 - Feb. 24, 2001)
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A Brief History

1948 - efficient source representation, reli-
able information transmission, digitalization
- foundation of communication and informa-
tion theory. Made the startling discovery that
arbitrarily reliable communications are possi-
ble at non-zero rates. Prior to Shannon, it
was believed that in order to get arbitrarily
low probability of error, the transmission rate
must go to zero. His paper “A Mathematical
Theory of Communications” proved to be the
foundation of modern communication theory.

Claude E. Shannon
(Apr. 30, 1916 - Feb. 24, 2001)
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A Brief History

Claude E. Shannon
(Apr. 30, 1916 - Feb. 24, 2001)

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 7, 2021 13 / 55



Quotes

“What made possible, what induced the
development of coding as a theory, and the
development of very complicated codes, was
Shannon’s Theorem: he told you that it
could be done, so people tried to do it.” -
Robert Fano

“Before 1948, there was only the fuzziest
idea of a message was. There was some
rudimentary understanding of how to
transmit a waveform and process a received
waveform, but there was essentially no
understanding of how to turn a message into
a transmitted waveform.” - Robert Gallager
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Quotes

“To make the chance of error as small as
you wish? Nobody had ever thought of that.
How he got that insight, how he even came
to believe such a thing, I don’t know. But
almost all modern communication
engineering is based on that work.” - Robert
Fano
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A Brief History (cont’)

1950 R. Hamming - Developed a family of
error-correcting codes

1952 D. Huffman - Efficient source encoding

1950-60’s Muller, Reed, Solomon, Bose,
Ray-Chaudhuri, Hocquenghem - Algebraic
Codes

1970’s Fano, Viterbi - Convolutional Codes

1990’s Berrou, Glavieux, Gallager, Lin - Near
capacity achieving coding schemes: Turbo
Codes, Low-Density Parity Check Codes

Richard W. Hamming
(1915-1998)

2008 E. Arikan - First practical construction of codes achieving
capacity for a wide array of channels: Polar Codes
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An example

Mars, Mariner IV, ’64 using
no coding
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An example

Mars, Mariner IV, ’64 using
no coding

Mars, Mariner VI, ’69 using
Reed-Muller coding
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An example

Mars, Mariner IV, ’64 using
no coding

Mars, Mariner VI, ’69 using
Reed-Muller coding

Saturn, Voyager, ’71 using
Golay coding
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A Communication System
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A Communication System

Info. Source: any source of data we wish to transmit or store

Transmitter: mapping data source to the channel alphabet in an
efficient manner

Receiver: mapping from channel to data to ensure “reliable” reception

Destination: data sink
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A Communication System

Question: Under what conditions can the output of the source be
conveyed reliably to the destination? What is reliable? Low prob. of error?
Low distortion?
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An Expanded Communication System

What is the ultimate data compression (answer: the entropy H)? What is
the ultimate transmission rate of communication (answer: channel
capacity C)?
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Encoders

Source Encoder

map from source to bits

“matched” to the information source

Goal: to get an efficient representation of the source (i.e., least
number of bits per second, minimum distortion, etc.)
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Encoders

Source Encoder

map from source to bits

“matched” to the information source

Goal: to get an efficient representation of the source (i.e., least
number of bits per second, minimum distortion, etc.)

Channel Encoder

map from bits to channel

depends on channel available (channel model, bandwidth, noise,
distortion, etc.) In communication theory, we work with hypothetical
channels which in some way capture the essential features of the
physical world.

Goal: to get reliable communication
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Source Encoder: Examples

Goal: To get an efficient representation (i.e., small number of bits) of
the source on average.
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Source Encoder: Examples

Goal: To get an efficient representation (i.e., small number of bits) of
the source on average.

Example 1: An urn contains 8 numbered balls. One ball is selected. How
many binary symbols are required to represent the outcome?

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 7, 2021 27 / 55



Source Encoder: Examples

Goal: To get an efficient representation (i.e., small number of bits) of
the source on average.

Example 1: An urn contains 8 numbered balls. One ball is selected. How
many binary symbols are required to represent the outcome?

Answer: Require 3 bits to represent any given outcome.
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Source Encoder: Examples

Example 2: Consider a horse race with 8 horses. It was determined that
the probability of horse i winning is

Pr[horse i wins] =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
(2)
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Source Encoder: Examples

Example 2: Consider a horse race with 8 horses. It was determined that
the probability of horse i winning is

Pr[horse i wins] =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
Answer 1: Let’s try the code of the previous example.
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Source Encoder: Examples

Example 2: Consider a horse race with 8 horses. It was determined that
the probability of horse i winning is

Pr[horse i wins] =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
Answer 1: Let’s try the code of the previous example.

To represent a given
outcome, the average
number of bits is
` = 3.
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Source Encoder: Examples

Example 2: Consider a horse race with 8 horses. It was determined that
the probability of horse i winning is

Pr[horse i wins] =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
Answer 2: What if we allow the length of each representation to vary
amongst the outcomes, e.g., a Huffman code:
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Source Encoder: Examples

Example 2: Consider a horse race with 8 horses. It was determined that
the probability of horse i winning is

Pr[horse i wins] =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
Answer 2: What if we allow the length of each representation to vary
amongst the outcomes, e.g., a Huffman code:

The average number
of bits is

` =
1

2
+

1

4
· 2 +

1

8
· 3 +

1

16
· 4

+
4

64
· 6

=2
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Source Encoder: Examples

Definition: The source entropy, H(X ) of a random variable X with a
probability mass function p(x), is defined as

H(X ) =
∑
x

p(x) log2
1

p(x)

As we will show later in the course, the most effcient representation has
average codeword length ` as

H(X ) ≤ ` < H(X ) + 1

Pr[horse i wins] =

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64

)
H(X ) =

1

2
log 2 +

1

4
log 4 +

1

8
log 8 +

1

16
log 16 +

4

64
log 64 = 2

The Huffman code is optimal!
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Source Encoder: Examples

Information theory and coding deal with the “typical” or expected
behavior of the source.

Entropy is a measure of the average uncertainty associated with the
source.
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Channel Encoder

Goal: To achieve an economical (high rate) and reliable (low
probability of error) transmission of bits over a channel.

With a channel code we add redundancy to the transmitted data sequence
which allows for the correction of errors that are introduced by the channel.

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 7, 2021 36 / 55



Channel Encoder

Shannon’s Channel Coding Theorem There is a quantity called the

capacity, C , of a channel such that for every rate R < C there exists a

sequence of
(

2nR︸︷︷︸
#codewords

, n︸︷︷︸
#chan. uses

)
codes such that Pr[error ]→ 0 as

n→∞. Conversely, for any code, if Pr[error ]→ 0 as n→ 1 then R ≤ C .

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 7, 2021 37 / 55



Example: binary Symmetric Channel

Input channel alphabet = Output channel alphabet = {0, 1}
Assume independent channel uses (i.e., memoryless)

Channel randomly flips the bit with probability p

For p = 0 or p = 1, C = 1 bits/channel use (noiseless channel or
inversion channel)

Worst case: p = 1/2, in which case the input and the output are
statistically independent ( C = 0 )

Question: How do we devise codes which perform well on this
channel?
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Repetition Code

In this code, we repeat one bit odd times. The code consists of two
possible codewords:

C = {000 · · · 0, 111 · · · 1}

Decoding by a majority voting scheme: if there are more 0’s than 1’s
then declare 0, otherwise 1.

Suppose that R = 1/3, i.e., the source output can be encoded before
transmission by repeating each bit three times.
Example:
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Repetition Code

Example:

The bit error probability Pre is:

Pre = Pr[2channel errors] + Pr[3channel errors]

=3p2(1− p) + p3

=3p2 − 2p3

If p ≤ 1/2, Pre is less than p. So, the repetition code improves the
channel’s reliability. And for small p, the improvement is dramatic.
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Repetition Code

For R = 1/3, the bit error probability Pre is:

Pre = 3p2 − 2p3.

For R = 1/(2m + 1), the bit error probability Pre is:

Pre =
2m+1∑
k=m+1

Pr[k errors out of 2m + 1 transmitted bits]

=
2m+1∑
k=m+1

(
2m + 1

k

)
pk(1− p)2m+1−k

=

(
2m + 1
m + 1

)
pm+1 + terms of higher degree in p.

Thus, Pre → 0 as m→ 1. However, R → 0! Repetition code is
NOT efficient! Shannon demonstrated that there exist
codes which are capacity achieving at non-zero rates.
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Review of Probability Theory

Discrete Random Variables

A discrete random variable is used to model a “random
experiment” with a finite or countable number of possible
outcomes. For example, the toss of a coin, the roll of a die, or the
count of the number of telephone calls during a given time, etc.

The sample space S, of the experiment is the set of all possible
outcomes and contains a finite or countable number of elements.
Let S = {ζ1, ζ2, · · · }.

An event is a subset of S. Events consisting a single outcome are
called elementary events.
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Review of Probability Theory

Discrete Random Variables

Let X be a random variable with sample space SX . A probability
mass function (pmf) for X is a mapping pX : SX → [0, 1] from SX
to the closed unit interval [0, 1] satisfying∑

x∈SX

pX (x) = 1, (3)

where the number pX (x) is the probability that the outcome of the
given random experiment is x, i.e., pX (x) = Pr[X = x ].
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Review of Probability Theory

Discrete Random Variables

Let X be a random variable with sample space SX . A probability
mass function (pmf) for X is a mapping pX : SX → [0, 1] from SX
to the closed unit interval [0, 1] satisfying∑

x∈SX

pX (x) = 1, (4)

where the number pX (x) is the probability that the outcome of the
given random experiment is x, i.e., pX (x) = Pr[X = x ].

Every event A ⊆ S has a probability p(A) ∈ [0, 1] satisfying the
following:

1. p(A) ≥ 0

2. p(S) = 1

3. for A,B ⊆ S, p(A ∪ B) = p(A) + p(B) if A ∩ B = ∅

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING September 7, 2021 44 / 55



Review of Probability Theory

Vector Random Variables

If the elements of sample space SZ are vectors of real numbers,
then Z is a (real) vector random variable.

Suppose Z is a vector random variable with Z = (X ,Y ), where X
and Y are both discrete random variables. In its sample space,
each elements has two components, i.e.,
Sz = {z1, z2, · · · } = {(x1, y1), (x2, y2), · · · }.

The projection of SZ on its first coordinate is

SX = {x |∀(x , y) ∈ SZ}.

Example: If Z = (X ,Y ) and SZ = {(0, 0), (1, 0), (0, 1), (1, 1)},
then SX = SY = {0, 1}.
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Review of Probability Theory

Vector Random Variables

The pmf of a vector random variable Z = (X ,Y ) is also called the
joint pmf of X and Y , and is denoted by

pZ (x , y) = pX ,Y (x , y) = Pr(X = x ,Y = y),

where the comma in the last equation denotes a logical ‘AND’
operation.
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Review of Probability Theory

Vector Random Variables

The pmf of a vector random variable Z = (X ,Y ) is also called the
joint pmf of X and Y , and is denoted by

pZ (x , y) = pX ,Y (x , y) = Pr(X = x ,Y = y),

where the comma in the last equation denotes a logical ‘AND’
operation.

From pX ,Y (x , y), we can find marginal pmf pX (x) as

pX (x) ≡ Pr(X = x) =
∑
y∈SY

pX ,Y (x , y);

and similarly,

pY (y) ≡ Pr(Y = y) =
∑
x∈SX

pX ,Y (x , y); (5)
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Conditional Probability

Let A and B be events, with Pr[A] > 0. The conditional probability of
B given that A occured is

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
.
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Conditional Probability

Let A and B be events, with Pr[A] > 0. The conditional probability of
B given that A occured is

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
.

Thus, Pr[A|A] = 1, and Pr[B|A] = 0 if A ∩ B = ∅.
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Conditional Probability

Let A and B be events, with Pr[A] > 0. The conditional probability of
B given that A occured is

Pr[B|A] =
Pr[A ∩ B]

Pr[A]

Thus, Pr[A|A] = 1, and Pr[B|A] = 0 if A ∩ B = ∅.

If Z = (X ,Y ) and pX (xk) > 0, then

pY |X (yj |xk) = Pr[Y = yj |X = xk ]

=
Pr[X = xk ,Y = yj ]

Pr[X = xk ]

=
pX ,Y (xk , yj)

pX (xk)
.
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Conditional Probability

If Z = (X ,Y ) and pX (xk) > 0, then

pY |X (yj |xk) =
pX ,Y (xk , yj)

pX (xk)
.

Then random variables X and Y are independent if

∀(x , y) ∈ SX ,Y , pX ,Y (x , y) = pX (x)pY (y).
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Conditional Probability

If Z = (X ,Y ) and pX (xk) > 0, then

pY |X (yj |xk) =
pX ,Y (xk , yj)

pX (xk)
.

Then random variables X and Y are independent if

∀(x , y) ∈ SX ,Y , pX ,Y (x , y) = pX (x)pY (y).

If X and Y are independent, then

pX |Y (x |y) =
pX ,Y (x , y)

pY (y)
=

pX (x)pY (y)

pY (y)
= pX (x),

and

pY |X (y |x) =
pX ,Y (x , y)

pX (x)
=

pX (x)pY (y)

pX (x)
= pY (y),
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Expected Value

If X is a random variable, the expected value (or mean) of X ,
denoted by E [X ], is

E [X ] =
∑
x∈SX

xpX (x).

Then expected value of the random variable f (X ) is

E [f (X )] =
∑
x∈SX

f (x)pX (x).
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Expected Value

If X is a random variable, the expected value (or mean) of X ,
denoted by E [X ], is

E [X ] =
∑
x∈SX

xpX (x).

Then expected value of the random variable f (X ) is

E [f (X )] =
∑
x∈SX

f (x)pX (x).

In particular, E [X n] is the n-th moment of X . The variance of X is

VAR[X ] = E [X 2]− E [X ]2.
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