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Differential Entropy - 1

Definitions

AEP for Continuous Random Variables

Relation of differential entropy to discrete entropy
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From discrete to continuous variables
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Differential Entropy

Definition

Let X be a random variable with cumulative distribution function (CDF)
F (x) = Pr(X ≤ x). If F (x) is continuous, the random variable is
continuous. Let f(x) = F ′(X) when the derivative is defined. If∫ +∞
−∞ f(x) = 1, f(x) is called the probability density function (pdf) for X.

The set of x where f(x) > 0 is called the support set of the X.

Definition

The differential entropy h(X) of a continuous random variable X with
density f(x) is defined as

h(X) = −
∫
S
f(x) log f(x)dx = h(f),

where S is the support set of the random variable.
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Example: Uniform distribution

f(x) = 1
a , x ∈ [0, a]

The differential entropy is:

h(X) = −
∫ a

0

1

a
log

1

a
dx = log a bits

for a < 1, h(X) = log a< 0, differential entropy can be negative!
(unlike discrete entropy)
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Example: Normal distribution

X ∼ φ(x) = 1√
2πσ2

exp(−x
2

2σ2 ), x ∈ R
Differential entropy:

h(φ) =
1

2
log 2πeσ2 bits

Calculation:

h(φ) = −
∫
φ log φdx = −

∫
φ(x)

[
− x2

2σ2
log e− log

√
2πσ2

]
dx

=
E(X2)

2σ2
log e+

1

2
log 2πσ2 =

1

2
log e+

1

2
log 2πσ2

=
1

2
log 2πeσ2
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AEP for continuous random variables

Discrete world: for a sequence of i.i.d. random variables

1

n
log p(X1, X2, . . . , Xn)→ H(X).

Continuous world: for a sequence of i.i.d. random variables

− 1

n
log f(X1, X2, . . . , Xn)→ E[− log f(X)] = h(X) in probability

Proof follows from the weak law of large numbers.
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Typical set

Discrete case: number of typical sequences∣∣∣A(n)
ε

∣∣∣ ≈ 2nH(X)

Continuous case: The volume of the typical set

Vol(A) =

∫
A

dx1dx2 . . . dxn, A ⊂ Rn.

Definition

For ε > 0 and any n, we define the typical set A
(n)
ε with respect to f(x) as

follows:

A(n)
ε =

{
(x1, x2, . . . , xn) ∈ Sn :

∣∣∣∣− 1

n
log f(x1, x2, . . . , xn)− h(X)

∣∣∣∣ ≤ ε} ,
where f(x1, x2, . . . , xn) =

∏n
i=1 f(xi).
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Typical set

Theorem

The typical set A
(n)
ε has the following properties:

1. Pr(A
(n)
ε ) > 1− ε for n sufficiently large.

2. Vol(A
(n)
ε ) ≤ 2n(h(X)+ε) for all n.

3. Vol(A
(n)
ε ) ≥ (1− ε)2n(h(X)−ε) for n sufficiently large.

Proof. 1.

Similar to the discrete case.
By definition, − 1

n log f(Xn) = − 1
n

∑
log f(Xi)→ h(X) in

probability.
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Typical set

Theorem

The typical set A
(n)
ε has the following properties:

2. Vol(A
(n)
ε ) ≤ 2n(h(X)+ε) for all n.

Poof. 2.

1 =

∫
Sn
f(x1, x2, . . . , xn)dx1dx2 . . . dxn

≥
∫
A

(n)
ε

f(x1, x2, . . . , xn)dx1dx2 . . . dxn

≥
∫
A

(n)
ε

2−n(h(X)+ε)dx1dx2 . . . dxn = 2−n(h(X)+ε)

∫
A

(n)
ε

dx1dx2 . . . dxn

= 2−n(h(X)+ε)Vol(A(n)
ε ).
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Typical set

Theorem

The typical set A
(n)
ε has the following properties:

3. Vol(A
(n)
ε ) ≥ (1− ε)2n(h(X)−ε) for n sufficiently large.

Proof. 3.

1− ε ≤
∫
A

(n)
ε

f(x1, x2, . . . , xn)dx1dx2 . . . dxn

≤
∫
A

(n)
ε

2−n(h(X)−ε)dx1dx2 . . . dxn

= 2−n(h(X)−ε)
∫
A

(n)
ε

dx1dx2 . . . dxn

= 2−n(h(X)−ε)Vol(A(n)
ε ).
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An interpretation

The volume of the smallest set that contains most of the probability
is approximately 2nh(X).

For an n-dim volume, this means that each dim has length(
2nh(X)

) 1
n = 2h(X).
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Mean value theorem (MVT)

If a function f is continuous on the closed interval [a, b], and differentiable
on (a, b), then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
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Relation of differential entropy to discrete entropy

Consider a random variable X with pdf f(x). We divide the range of
X into bins of length ∆.

MVT: there exists a value xi ∈ (i∆, (i+ 1)∆) within each bin such
that

f(xi)∆ =

∫ (i+1)∆

i∆
f(x)dx.
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Relation of differential entropy to discrete entropy

Define the quantized random variable as X∆ = xi if
i∆ ≤ X ≤ (i+ 1)∆ with pmf

pi = Pr[X∆ = xi] =

∫ (i+1)∆

i∆
f(x)dx = f(xi)∆.

The entropy of X∆ is

H(X∆) = −
+∞∑
−∞

pi log pi = −
∑

∆f(xi) log f(xi)− log ∆.

If f(x) is is Riemann integrable, as ∆→ 0,

H(X∆) + log ∆→ h(f) = h(X)
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Reading & Homework

Reading: Chapter 8: 8.1 - 8.3

Homework: Problems 8.1, 8.5, 8.7
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