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Multivariate Gaussian maximizes the entropy

Theorem

Let the random vector X ∈ Rn have zero mean and covariance
K = EXXt (i.e., Kij = EXiXj , 1 ≤ i, j ≤ n). Then

h(X) ≤ 1

2
log(2πe)n|K|

with equality iff X ∼ N (0,K).
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Communication with noise

Mona Lisa in AWGN
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Gaussian channel

The most important continuous alphabet channel: Additive White
Gaussian Noise (AWGN) channel

Given the input Xi, the noise Zi ∼ N (0, N) independent of Xi, the
channel output can be written as Yi = Xi + Zi

a model for communication channels: wireless phone, satellite links
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Channel capacity of Gaussian channel

Intuition: C = log # of distinguishable signals

If N = 0, C =∞ (receives the transmission perfectly)

If no power constraint on the input, C =∞ (can choose an infinite
subset of inputs arbitrarily far apart)

The most common limitation average power constraint: for any
codeword (x1, x2, . . . xn)

1

n

n∑
i=1

xi
2 ≤ P
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Naive way of using Gaussian channel

Binary phase-shift keying (BPSK)

transmit 1 bit over the channel

1→ x = +
√
P , 0→ x = −

√
P

Y = ±
√
P + Z

Probability of error

Pe = 1− Φ

(√
P

N

)
= Q

(√
P

N

)
,

where Φ(x) is the cumulative normal function of standard normal
distribution:

Φ(x) =

∫ x

−∞

1√
2π

exp

(
−t2

2

)
dt.

Convert Gaussian channel into a discrete BSC with p = Pe. Lose
information in quantization, but make processing of the output signal
easy.
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Gaussian channel capacity

Definition

The capacity of the Gaussian channel with power constraint P is

C = max
f(x): EX2≤P

I(X;Y ).

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− h(X + Z|X)

= h(Y )− h(Z|X) = h(Y )− h(Z)

≤ 1

2
log 2πe(P +N)− 1

2
log 2πeN (EY 2 = P +N)

=
1

2
log

(
1 +

P

N

)
.

with equality attained when X ∼ N (0, P ).
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C as maximum data rate

We will show that C the the supremum of the rates achievable for
AWGN. (Similar to a discrete channel)

Definition

An (M,n) code for the Gaussian channel with power constraint P consists
of the following:
1. An index set {1, 2, . . . ,M}.
2. An encoding function x : {1, 2, . . . ,M} → X n, yielding codewords
xn(1), xn(2), . . . , xn(M), satisfying the power constraint P :

n∑
i=1

x2i (w) ≤ nP, w = 1, 2, . . . ,M.

3. A decoding function g : Yn → {1, 2, . . . ,M}.
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C as maximum data rate

We will show that C the the supremum of the rates achievable for
AWGN channel. (simlilar to a discrete channel)

Definition

A rate R is achievable for a Gaussian channel with a power constraint P if
there exists a (2nR, n) codes with maximum probability of error

λ(n) = max
i=1,2,...,2nR

λi → 0 as n→∞.
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Sphere packing

Why we may be able to construct (2nR, n) codes with low probability
of error?

Fix one codeword

consider any codeword of length n

received vector is normally distributed ∼ Nn(true codeword, NIn)

with high probability, received vector contained in a sphere of radius√
n(N + ε) around true codeword

assign everything within a sphere to a given codeword
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Sphere packing

with power constraint, with high probability the space of received
vectors is a sphere with radius

√
n(P +N)

volume of n-dimensional sphere = Cnr
n, for constant Cn and radius r

the maximum number of nonintersection decoding spheres is

Cn(n(P +N))n/2

Cn(nN)n/2
=

(
1 +

P

N

)n/2

rate of this codebook = log2(size of the codewords)
n = 1

2 log2
(
1 + P

N

)
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Sphere packing
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Gaussian channel capacity theorem

Theorem

The capacity of a Gaussian channel with power constraint P and noise
variance N is

C =
1

2
log

(
1 +

P

N

)
bits per transmission

Proof.

Use the same ideas as in the proof of the channel coding theorem in the
discrete case to prove:
1) achievability; 2) converse

Two main differences:
1) the power constraint P;
2) the variables are continuous
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New stuff in proof

Achievability:

codeword elements generated i.i.d. according Xj(i) ∼ N (0, P − ε). So

1

n
X2
i → P − ε

Probability error : w.l.o.g., assume that codeword 1 was sent. Define

E0 =
{ 1

n

n∑
j=1

X2
j (1) > P

}
and Ei = {(Xn(i), Y n) is in A(n)

ε }.

Then an error occurs if E0 occurs or Ec1 occurs or ∪2nR

i=2Ei occurs. The
error probability is small according to law of large numbers.
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New stuff in proof

Converse: Gaussian distribution has maximum entropy. Parallel to
the arguments for a discrete channel. Please read the proof in the
textbook.
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Bandlimited channels

More common channel model: bandlimited continuous AWGN:

Y (t) = (X(t) + Z(t)) ∗ h(t)

where “∗” denotes convolution
X(t)−signal waveform
Z(t)−white Gaussian noise
h(t)−impulse response of an ideal bandpass filter, which cuts off all
frequencies > W .

Theorem (Nyquist-Shannon Sampling Theorem)

Suppose that a function f(t) is bandlimited to W , namely, the spectrum of
the function is 0 for all frequencies > W . Then the function is completely
determined by samples of the functions spaced 1

2W seconds apart.
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Capacity of continuous-time bandlimited AWGN

Thus, in each second, the transmission can be written as
Y (nT ) = X(nT ) + Z(nT ), where T = 1/2W and n = 1, 2, ..., 2W

Noise has power spectral density N0
2 watts/hertz, and bandwidth W

hertz. The noise has power = N0
2 2W = N0W and each of the 2WT

noise samples in time T has variance N0WT
2WT = N0

2 .

Signal power P watts

2W samples each second

Channel capacity

C = 2W
1

2
log

(
1 +

P

N

)
2W samples per second

= 2W
1

2
log

(
1 +

P
2W
N0
2

)
P per sample

PT

2WT
=

P

2W

= W log

(
1 +

P

N0W

)
bits per second
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Capacity of continuous-time bandlimited AWGN

channel capacity

C = 2W
1

2
log

(
1 +

P

N

)
2W samples per second

= 2W
1

2
log

(
1 +

P
2W
N0
2

)
P per sample

PT

2WT
=

P

2W

= W log

(
1 +

P

N0W

)
bits per second

The capacity formula of a bandlimited Gaussian channel with noise
spectral density N0

2 watts/Hz and power P watts.

when W →∞, C → P
N0

log2 e bits per second
For infinite bandwidth channels, the capacity grows linearly with the
power.
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Example: telephone line

telephone signals are bandlimited to 3300 Hz

SNR = 33dB : P
N0W

= 2000

capacity C = 36000 bits per second

practical modems achieve transmission rates up to 33600 bit per
second uplink and downlink

ADSL achieves 56kb/s downlink (asymmetric data rate)
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Parallel Gaussian channels

Consider k independent Gaussian channels in parallel with a common
power constraint

Objective: to distribute the total power among the channels to
maximize the capacity
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Parallel channels are everywhere

OFDM (orthogonal frequency-division multiplexing), parallel channels
formed in frequency domain

MIMO (multiple-input-multiple-output) - multiple antenna system

DMT (discrete multi-tone systems)
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Parallel independent channels

k independent channels

Yj = Xj + Zj , j = 1, 2, . . . , k, Zj ∼ N (0, Nj)

total power constraint E
∑k

j=1X
2
j ≤ P

Goal: distribute power among various channels to maximize the total
capacity
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Channel capacity

channel capacity of parallel Gaussian channel

C = max
f(x1,x2,...,xk): E

∑k
i=1 X

2
i ≤P

I(X1.X2, . . . , Xk;Y1, Y2, . . . , Yk)

=

k∑
i=1

1

2
log

(
1 +

Pi

Ni

)

where Pi = EX2
i , and

∑k
i=1 Pi = P .

This is a standard optimization problem

max
P1,P2,...,Pk

k∑
i=1

log(1 + Pi/Ni)

subject to
k∑

i=1

Pi = P
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Water-filling for parallel channels

allocate more power in less noisy channels

very noisy channels are abandoned
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Water-filling for parallel channels

Pi = (ν −Ni)
+, (x)+ = max(x, 0)

ν is determined by power constraint:
∑

(ν −Ni)
+ = P
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Reading & Homework

Reading: Chapter 9.1 - 9.3

Homework: Problems 9.4, 9.5
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