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Outline

Communication model: QAM modulation, Constellation

Block codes: Parity check code, Hamming code, Linear block code

Continuous codes: Convolutional code
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Communication model
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Modem example: QAM

Quadrature Amplitude Modulation (QAM)

The two basis signals ϕp(.) and ϕq(.) are orthogonal:∫ Ts
0 ϕp(t)ϕq(t)dt = 0. For simplicity, let ϕp(.) and ϕq(.) be normalized:∫ Ts
0 ϕ2

p(t)dt = 1 and
∫ Ts
0 ϕ2

q(t)dt = 1.
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Constellation

Translate every 4 bits to a constellation point, b1b2b3b4 → (sp, sq):

For example, 1011→ (−3, 3), 1111→ (3, 3) and etc.
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Modem example: QAM

The detector of QAM modem

∫ Ts

0
s(t)ϕp(t)dt =

∫ Ts

0
[spϕp(t) + sqϕq(t)]ϕp(t)dt

=

∫ Ts

0
spϕ

2
p(t)dt+

∫ Ts

0
sqϕp(t)ϕq(t)

= sp
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Orthogonal Carriers

ϕp(t) = asin
(
2π
Tc
t
)
, ϕq(t) = acos

(
2π
Tc
t
)
since∫ Ts

0 sin
(
2π
Tc
t
)
cos
(
2π
Tc
t
)
dt = 1

2

∫ Ts
0 sin

(
4π
Tc
dt
)
= 0

To normalize, a =
√

2
Ts
.
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Interference
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Assumption

To deal with these interferences is an important topic in Digital
Communication course (e.g. adaptive equalization)

Assume that the interference has been eliminated. The only problem
is noise.
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Modulation/demodulation process
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Modulation/demodulation process

To transmit the hexa E = (1110), the modem generates with (1, 3) the
signal

s(t) = ϕp(t) + 3ϕq(t) =

√
2

Ts
sin

(
2π

Ts
t

)
+ 3

√
2

Ts
cos

(
2π

Ts
t

)
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Modulation/demodulation process

To transmit the hexa E, the modem generates with (1, 3) the signal

s(t) = ϕp(t) + 3ϕq(t) =

√
2

Ts
sin

(
2π

Ts
t

)
+ 3

√
2

Ts
cos

(
2π

Ts
t

)
Let φ be an angle s.t. sinφ = 3√

10
, cosφ = 1√

10
. Thus,

s(t) =
√
10

√
2

Ts
sin

(
2π

Tc
t

)
cosφ+

√
10

√
2

Ts
cos

(
2π

Tc
t

)
sinφ

=
√
10

√
2

Ts
sin

(
2π

Tc
t+ φ

)
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Modulation/demodulation process

The received signal with noise n(t) can be written as

r(t) = s(t) + n(t).

The detected symbols

rp =

∫ Ts

0
r(t)ϕp(t)dt = 1 +

∫ Ts

0
n(t)ϕp(t)dt︸ ︷︷ ︸
np

.

rq =

∫ Ts

0
r(t)ϕq(t)dt = 3 +

∫ Ts

0
n(t)ϕq(t)dt︸ ︷︷ ︸
nq

,

where np and nq are both Gaussian R.V.
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Modulation/demodulation process

9 1 C 7 8 - 1001 0001 1100 0111 1000 — hexas to be sent
(-1, 3) (-3, -1) (1, 1) (3, -3) (-1, 1) — modem symbols
(0.5, 3.25) (-2.75, -2.13) (1.5, 0:5) (2.5, -3.25) (-0.5, 0.12) (1, 3) (-3,-3)
(1, 1) (3,-3) (-1, 1) — decision symbols
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Channel coder & decoder
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Types of codes

Block codes
Map a block of bits onto a codeword

Continuous (convolutional, trellis) codes
Each output block depends on some of the past inputs
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Block codes

4 bits information with 4 check bits. We are able to correct 1 bit error.

If at most 1 bit is wrong, then

All parity checks correct — No Error

One parity check fails — Error in the parity check

Two parity checks fail — Point to the position of the erroneous bit
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Block codes

Two possibilities to do better

Find a single error correcting code that requires fewer check bits: a
(7, 4) code?

Find a code with the same number of parity bits but enhanced error
control capabilities, e.g., a single error correcting code also able to
detect two errors?
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Block codes

1. x1 is erroneous, 1, 2, 4
2. p1 is erroneous, 1
3. x1 and p1 ..., 2, 4
4. x1 and p2 ..., 1, 4
5. x1 and p3 ..., 1, 2, 3, 4
6. x1 and x2 ..., 3, 4
7. x1 and x3 ..., 1, 3
8. p1 and p2 ..., 1, 2
9. p1 and p3 ..., 1, 3

Due to symmetry, only a few cases need to be checked.
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Block codes

1. x1 is erroneous, 1, 2, 4
2. p1 is erroneous, 1
3. x1 and p1 ..., 2, 4
4. x1 and p2 ..., 1, 4
5. x1 and p3 ..., 1, 2, 3, 4
6. x1 and x2 ..., 3, 4
7. x1 and x3 ..., 1, 3
8. p1 and p2 ..., 1, 2
9. p1 and p3 ..., 1, 3

Suppose at most 2 bits are wrong, then

All parity equations correct — No error
One equation fails — Error in the parity bit
An even number of equations fail — Two errors detected
Three equations fail — One error corrected
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Block codes

If the codeword 10010110 was sent, the receiver got 01001110 with 4
errors. All parity equations are correct, and this is accepted as a legitimate
codeword!
undetectable error
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Block codes

If the codeword 10010110 was sent, the receiver got 11001110 with 3
errors. Equations 1, 2, 4 fail. x1 was corrected!
erroneous decoding
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Block codes

— No error
— Undetectable error
— Error detected
— Error corrected
— Erroneous decoding
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Block codes

In the previous example, three parity equations are enough! — Hamming
code
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