INFORMATION THEORY & CODING Week 4 : Asymptotic Equipartition Property (AEP)

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

September 29, 2020

Inequalities related to D and I

1. $D(p||q) \ge 0$ with equality iff p(x) = q(x), for all $x \in \mathcal{X}$ (*information inequality*).

- 2. $I(X; Y) = D(p(x, y) || p(x)p(y)) \ge 0$, with equality iff p(x, y) = p(x)p(y) (i.e., X and Y are independent).
- 3. If $|\mathcal{X}| = m$, and u is the uniform distribution over \mathcal{X} , then $D(p||u) = \log m H(p)$.

Jensen's Inequality

If f is a convex function, then $E[f(X)] \ge f(E[X])$.

Data-processing inequality

If $X \to Y \to Z$ forms a Markov chain, then $I(X; Y) \ge I(X; Z)$.

Problem 2.5 (Zero conditional entropy)

Show that if H(X|Y) = 0, then X is a function of Y, i.e., for all y with p(y) > 0, there is only one possible value of x with p(x, y) > 0.

Proof.

Assume that there exists an y, say y_0 and two different values of x, say x_1 and x_2 such that $p(y_0, x_1) > 0$ and $p(y_0, x_2) > 0$. Then $p(y_0) \ge p(y_0, x_1) + p(y_0, x_2) > 0$, and $p(x_1|y_0)$ and $p(x_2|y_0)$ are not equal to 0 or 1. Thus,

$$\begin{aligned} H(X|Y) &= -\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y) \\ &\geq p(y_0) \left(-p(x_1|y_0) \log p(x_1|y_0) - p(x_2|y_0) \log p(x_2|y_0) \right) \\ &> 0 \end{aligned}$$

since $-t \log t \ge 0$ for $0 \le t \le 1$, and is strictly positive for $t \ne 0, 1$, which is a contradiction to H(X|Y) = 0.

意力科技大学

If H(X|Y) = 0, X is a function of Y. we can estimate X from Y with zero probability of error.

When H(X|Y) is not zero, our estimate X̂ may be wrong.
 Define

$$P_{e} = \Pr[\hat{X} \neq X],$$

as the detection error probability, we want to connect P_e with H(X|Y).

Theorem 2.10.1

For any estimator
$$\hat{X}$$
 such that $X \to Y \to \hat{X}$, with
 $P_e = \Pr\{X \neq \hat{X}\}$, we have
 $H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|\hat{X}) \ge H(X|Y)$.
This inequality can be weakened to
 $1 + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$
or
 $P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}| - 1}$.

Theorem 2.10.1

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, with $P_e = \Pr\{X \neq \hat{X}\}$, we have

 $H(P_e) + P_e \log(|\mathcal{X}| - 1) \geq H(X|\hat{X}) \geq H(X|Y).$

Proof.

Define an error random variable as

$$\Xi = \begin{cases} 1 & \text{if } \hat{X} \neq X, \\ 0 & \text{if } \hat{X} = X. \end{cases}$$

Using the chain rule for entropies to expand $H(E, X | \hat{X})$ in two different ways, we have

$$H(E, X | \hat{X}) = H(X | \hat{X}) + \underbrace{H(E | X, \hat{X})}_{=0} = \underbrace{H(E | \hat{X})}_{\leq H(P_e)} + \underbrace{H(X | E, \hat{X})}_{\leq P_e \log(|X| - 1)}$$

Since conditioning reduces entropy, $H(E|\hat{X}) \leq H(E) = H(P_e)$. Since *E* is a function of *X* and \hat{X} , the conditional entropy $H(E|X, \hat{X})$ is equal to 0. We now look at $H(X|E, \hat{X})$. By the equation $H(X|Y) = \sum_{y} p(y)H(X|Y = y)$, we have

$$\begin{split} H(X|E, \hat{X}) &= \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X|\hat{X} = \hat{x}, E = 0) \\ &+ \Pr[\hat{X} = \hat{x}, E = 1] H(X|\hat{X} = \hat{x}, E = 1) \}. \end{split}$$

500

H

Theorem 2.10.1

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, with $P_e = \Pr\{X \neq \hat{X}\}$, we have $H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|\hat{X}) \ge H(X|Y).$

Proof.

$$\begin{split} & \mathsf{H}(E, X | \hat{X}) = \mathsf{H}(X | \hat{X}) + \underbrace{\mathsf{H}(E | X, \hat{X})}_{=0} = \underbrace{\mathsf{H}(E | \hat{X})}_{\leq \mathsf{H}(P_e)} + \underbrace{\mathsf{H}(X | E, \hat{X})}_{\leq \mathsf{P}_e \log(|X| - 1)} \\ & \mathsf{H}(X | E, \hat{X}) = \sum_{\hat{x} \in \mathcal{X}} \{ \mathsf{Pr}[\hat{X} = \hat{x}, E = 0] \mathsf{H}(X | \hat{X} = \hat{x}, E = 0) \\ & + \mathsf{Pr}[\hat{X} = \hat{x}, E = 1] \mathsf{H}(X | \hat{X} = \hat{x}, E = 1) \}. \end{split}$$

By definition of *E*, *X* is conditionally deterministic given $\hat{X} = \hat{x}$ and E = 0, then $H(X|\hat{X} = \hat{x}; E = 0) = 0$. If $\hat{X} = \hat{x}$ and E = 1, then *X* must take a value in the set $\{x \in \mathcal{X} : x \neq x\hat{x}\}$ which contains $|\mathcal{X}| - 1$ elements. Then $H(X|\hat{X} = \hat{x}; E = 1) \leq \log(|\mathcal{X}| - 1)$.

$$\begin{split} \mathsf{H}(\mathcal{X}|\mathcal{E}, \hat{\mathcal{X}}) &\leq \sum_{\hat{x} \in \mathcal{X}} \mathsf{Pr}[\hat{\mathcal{X}} = \hat{x}, \mathcal{E} = 1] \log(|\mathcal{X}| - 1) \\ &= \mathsf{Pr}[\mathcal{E} = 1] \log(|\mathcal{X}| - 1) \\ &= \mathcal{P}_{e} \log(|\mathcal{X}| - 1) \end{split}$$

Dr. Rui Wang (EEE)

INFORMATION THEORY & CODING

Theorem 2.10.1

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, with $P_e = \Pr\{X \neq \hat{X}\}$, we have $H(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|\hat{X}) \ge H(X|Y).$

Proof.

$$\begin{split} H(E, X | \hat{X}) &= H(X | \hat{X}) + \underbrace{H(E | X, \hat{X})}_{=0} = \underbrace{H(E | \hat{X})}_{\leq H(P_{e})} + \underbrace{H(X | E, \hat{X})}_{\leq P_{e} \log(|X| - 1)} \\ H(X | E, \hat{X}) &= \sum_{\hat{x} \in \mathcal{X}} \{ \Pr[\hat{X} = \hat{x}, E = 0] H(X | \hat{X} = \hat{x}, E = 0) \\ + \Pr[\hat{X} = \hat{x}, E = 1] H(X | \hat{X} = \hat{x}, E = 1) \} . \\ H(X | E, \hat{X}) &\leq \sum_{\hat{x} \in \mathcal{X}} \Pr[\hat{X} = \hat{x}, E = 1] \log(|\mathcal{X}| - 1) \\ &= \Pr[E = 1] \log(|\mathcal{X}| - 1) \\ &= P_{e} \log(|\mathcal{X}| - 1) \\ &= P_{e} \log(|\mathcal{X}| - 1) \end{split}$$

By the data-processing inequality, we have $I(X; \hat{X}) \leq I(X; Y)$ and therefore $H(X|\hat{X}) \geq H(X|Y)$.

INFORMATION THEORY & CODING

Corollary

Corollary

For any two random variables X and Y, let $p = Pr(X \neq Y)$.

 $H(p) + p \log(|\mathcal{X}| - 1) \geq H(X|Y).$

Proof.

Let $\hat{X} = Y$ in Fano's inequality.

Remark

Suppose that there is no knowledge of Y. Thus, X must be guessed without any information. Let $X \in \{1, 2, ..., m\}$ and $p_1 \ge p_2 \ge \cdots \ge p_m$. Then the best guess of X is $\hat{X} = 1$ and the resulting probability of error is $P_e = 1 - p_1$. Fano's inquality becomes

$$H(P_e) + P_e \log(m-1) \ge H(X).$$

The probability mass function

$$(p_1, p_2, \cdots, p_m) = \left(1 - P_e, \frac{P_e}{m-1}, \cdots, \frac{P_e}{m-1}\right)$$

achieves this bound with equality.

Applications of Fano's inequality

• Prove converse in many theorems (including channel capacity)

• Compressed sensing signal model

$$y = Ax + w$$

where $A \in \mathcal{R}^{M \times d}$: projection matrix for dimension reduction. Signal x is sparse. Want to estimate x from y.

Lemma 2.10.1

If X and X' are *i.i.d.* with entropy H(X),

 $\Pr[X = X'] \ge 2^{-H(X)},$

with equality iff X has a uniform distribution.

Corollary

Let X, X' be independent with $X \sim p(x)$, $X' \sim r(x)$, $x, x' \in X$. Then $\Pr[X = Y'] > 2^{-H(p) - D(p||r)}$

$$\Pr\left[X = X'\right] \ge 2^{-H(p) - D(p||r)}$$

$$\Pr\left[X = X'\right] \ge 2^{-H(r) - D(r||p)}$$

Please refer to P40 of the textbook for the proof.

意动种技大学

Initial investment Y₀, daily return ratio r_i, in t-th day, your money is

$$Y_t = Y_0 r_1 \cdot \ldots \cdot r_t.$$

• Now if returns ratio r_i are i.i.d., with

$$r_i = \begin{cases} 4, & \text{w.p. } 1/2 \\ 0, & \text{w.p. } 1/2 \end{cases}$$

- So you think the expected return ratio is $E[r_i] = 2$.
- And then

$$E[Y_t] = E[Y_0r_1 \cdot \ldots \cdot r_t] = Y_0(E[r_i])^t = Y_02^t???$$

Stock Market

• With $Y_0 = 1$, actual return Y_t goes like

 $1 \quad 4 \quad 16 \quad 0 \quad 0 \quad \cdots$

• Why?

- The 'typical' sequences will end up with 0 return.
- Occasionally, we got high return.
- The expected return is increasing.
- Expectation does not show the typical feature of this random sequence. We can turn to typical set.

Theorem (Weak Law of Large Numbers)

Suppose that X_1, X_2, \ldots, X_n are *n* independent, identically distributed (i.i.d.) random variables, then

$$rac{1}{n}\sum_{i=1}^n X_i o E[X]$$
 in probability,

i.e. for every number $\epsilon > 0$,

$$\lim_{n\to\infty} \Pr\left[\left|\frac{1}{n}\sum_{i=1}^n X_i - E[X]\right| \le \epsilon\right] = 1.$$

Definition (Convergence of random variables)

Given a sequence of random variables, X_1, X_2, \ldots , we say that the sequence X_1, X_2, \ldots converges to a random variable X:

- In probability if for every $\epsilon > 0$, $\Pr[|X_n X| \ge \epsilon] \to 0$
- ② In mean square if $E[(X_n X)^2] \rightarrow 0$
- With probability 1 (a.k.a. almost surely) if $\Pr[\lim_{n\to\infty} X_n = X] = 1$

Asymptotic Equipartition Property (AEP)

Theorem 3.1.1 (AEP)

If X_1, X_2, \ldots are i.i.d. $\sim p(x)$, then

 $-rac{1}{n}\log p(X_1,X_2,\ldots,X_n)
ightarrow H(X)$ in probability.

Proof.

Since X_i are i.i.d., so are log $p(X_i)$. Hence, by the weak law of large numbers,

$$-\frac{1}{n}\log p(X_1, X_2, \dots, X_n) = -\frac{1}{n}\sum_i \log p(X_i)$$
$$\rightarrow -E[\log p(X)] \quad \text{in probability}$$
$$= H(X)$$

Typical Set

Definition

A typical set $A_{\epsilon}^{(n)}$ contains all sequence realizations $(x_1, x_2, \dots, x_n) \in \mathcal{X}^n$ with $2^{-n(H(X)+\epsilon)} \le p(x_1, x_2, \dots, x_n) \le 2^{-n(H(X)-\epsilon)}.$

Theorem 3.1.2

- If $(x_1, x_2, \ldots, x_n) \in A_{\epsilon}^{(n)}$, then $H(X) - \epsilon \leq -\frac{1}{n} \log p(x_1, x_2, \ldots, x_n) \leq H(X) + \epsilon.$
- $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for n sufficiently large.
- |A_ϵ⁽ⁿ⁾| ≤ 2^{n(H(X)+ϵ)}, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$ for n sufficiently large.

Proof.

1. Immediate from the definition of $A_{\epsilon}^{(n)}$.

The number of bits used to describe sequences in typical set is approximately nH(X).

Dr. Rui Wang (EEE)

INFORMATION THEORY & CODING

Theorem 3.1.2

• If
$$(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$$
, then
 $H(X) - \epsilon \leq -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \leq H(X) + \epsilon.$

- $\Pr[A_{\epsilon}^{(n)}] > 1 \epsilon$ for n sufficiently large.
- |A_ε⁽ⁿ⁾| ≤ 2^{n(H(X)+ε)}, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$ for n sufficiently large.

Proof.

2. By Theorem 3.1.1, the probability of the event $(X_1, X_2, \ldots, X_n) \in A_{\epsilon}^{(n)}$ tends to 1 as $n \to \infty$. Thus, for any $\delta > 0$, there exists an n_0 such that for all $n \ge n_0$, we have

$$\Pr\left\{\left|-\frac{1}{n}\log p\left(X_1, X_2, \ldots, X_n\right) - H(X)\right| < \epsilon\right\} > 1 - \delta.$$

Setting $\delta = \epsilon$, the conclusion follows.

Theorem 3.1.2

• If
$$(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$$
, then
 $H(X) - \epsilon \leq -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \leq H(X) + \epsilon.$

• $\Pr[A_{\epsilon}^{(n)}] > 1 - \epsilon$ for n sufficiently large.

- |A_ϵ⁽ⁿ⁾| ≤ 2^{n(H(X)+ϵ)}, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$ for n sufficiently large.

Proof.

3.

$$1 = \sum_{\mathbf{x} \in \mathcal{X}^n} p(\mathbf{x}) \ge \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} p(\mathbf{x})$$
$$\ge \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} 2^{-n(H(X)+\epsilon)}$$

$$=2^{-n(H(X)+\epsilon)}\left|A_{\epsilon}^{(n)}\right|.$$

Dr. Rui Wang (EEE)

INFORMATION THEORY & CODING

Theorem 3.1.2

• If
$$(x_1, x_2, \dots, x_n) \in A_{\epsilon}^{(n)}$$
, then
 $H(X) - \epsilon \leq -\frac{1}{n} \log p(x_1, x_2, \dots, x_n) \leq H(X) + \epsilon.$

• $\Pr[A_{\epsilon}^{(n)}] > 1 - \epsilon$ for n sufficiently large.

- |A_ε⁽ⁿ⁾| ≤ 2^{n(H(X)+ε)}, where |A| denotes the cardinality of the set A.
- $|A_{\epsilon}^{(n)}| \ge (1-\epsilon)2^{n(H(X)-\epsilon)}$ for n sufficiently large.

Proof.

4. For sufficiently large n, $\Pr[A_{\epsilon}^{(n)}] > 1 - \epsilon$, so that

$$\begin{aligned} -\epsilon &< \Pr\left[A_{\epsilon}^{(n)}\right] \\ &\leq \sum_{\mathbf{x} \in A_{\epsilon}^{(n)}} 2^{-n(H(X)-\epsilon)} \\ &= 2^{-n(H(X)-\epsilon)} \left|A_{\epsilon}^{(n)}\right. \end{aligned}$$

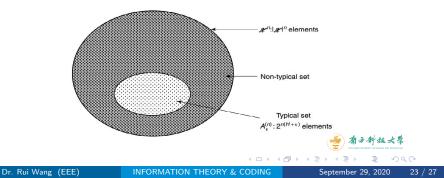
Typical set diagram

This enables us to divide all sequences into two sets

• Typical set: high probability to occur, sample entropy is close to true entropy

so we will focus on analyzing sequences in typical set

• Non-typical set: small probability, can ignore in general



Asymptotic Equipartition Property (AEP) Theorem 3.2.1

Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with distribution p(x), and $X^n = X_1 X_2 ... X_n$. For arbitrarily small $\epsilon > 0$, there exists a code that maps every realization $x^n = x_1 x_2 ... x_n$ of X^n into one binary string, such that the mapping is one-to-one (and therefore invertible) and

$$E\left[\frac{1}{n}\ell(X^n)
ight] \le H(X) + \epsilon$$

for a sufficiently large n.

Asymptotic Equipartition Property (AEP)

Theorem 3.2.1

$$E\left[rac{1}{n}\ell(X^n)
ight] \leq H(X) + \epsilon.$$

for n sufficiently large.

Proof.

Description in typical set requires no more than $n(H(X) + \epsilon) + 1$ bits (correction of 1 bit because of integrality).

Description in atypical set $A_{\epsilon}^{(n)^{C}}$ requires no more than $n \log |\mathcal{X}| + 1$ bits.

Add another bit to indicate whether in $A_{\epsilon}^{(n)}$ or not to get whole description.

Asymptotic Equipartition Property (AEP)

Theorem 3.2.1

$$E[\frac{1}{n}\ell(X^n)] \leq H(X) + \epsilon.$$

for n sufficiently large.

Proof.

Let $\ell(x^n)$ be the length of the binary description of x^n . Then, $\forall \epsilon > 0$, there exists n_0 s.t. $\forall n \geq n_0$, $E\left(\ell\left(X^{n}\right)\right) = \sum p\left(x^{n}\right)\ell\left(x^{n}\right)$ $=\sum_{x^{n}\in A_{\epsilon}^{(n)}}p\left(x^{n}\right)\ell\left(x^{n}\right)+\sum_{x^{n}\in A_{\epsilon}^{(n)^{C}}}p\left(x^{n}\right)\ell\left(x^{n}\right)$ $\leq \sum p(x^n)(n(H+\epsilon)+2) + \sum p(x^n)(n\log|\mathcal{X}|+2)$ $x^n < A_{-}^{(n)}$ $x^n \in A_c^{(n)C}$ $= \Pr[A_{\epsilon}^{(n)}](n(H+\epsilon)+2) + \Pr[A_{\epsilon}^{(n)}](n\log |\mathcal{X}|+2)$ $\leq n(H + \epsilon) + \epsilon n(\log |\mathcal{X}|) + 2$ $=n(H+\epsilon')$ where $\epsilon' = \epsilon + \epsilon \log |\mathcal{X}| + \frac{2}{n}$ can be made arbitrarily small by choosing *n* properly.

26 / 27

Reading: 2.10 and whole Chapter 3

Homework : Problems 2.32, 3.8, 3.10

