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Review Summary

Inequalities related to D and I

1. D(p‖q) ≥ 0 with equality iff p(x) = q(x), for all x ∈ X
(information inequality).

2. I (X ;Y ) = D(p(x , y)‖p(x)p(y)) ≥ 0, with equality iff
p(x , y) = p(x)p(y) (i.e., X and Y are independent).

3. If |X | = m, and u is the uniform distribution over X , then
D(p‖u) = logm − H(p).

Jensen’s Inequality
If f is a convex function, then E [f (X )] ≥ f (E [X ]).

Data-processing inequality
If X → Y → Z forms a Markov chain, then I (X ;Y ) ≥ I (X ;Z ).
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Fano’s inequality

Problem 2.5 (Zero conditional entropy)

Show that if H(X |Y ) = 0, then X is a function of Y , i.e., for all y
with p(y) > 0, there is only one possible value of x with
p(x , y) > 0.

Proof.
Assume that there exists an y , say y0 and two different values of x , say x1 and x2 such
that p(y0, x1) > 0 and p(y0, x2) > 0. Then p(y0) ≥ p(y0, x1) + p(y0, x2) > 0, and
p(x1|y0) and p(x2|y0) are not equal to 0 or 1. Thus,

H(X |Y ) =−
∑
y

p(y)
∑
x

p(x |y) log p(x |y)

≥ p (y0) (−p (x1|y0) log p (x1|y0)− p (x2|y0) log p (x2|y0))

> 0

since −t log t ≥ 0 for 0 ≤ t ≤ 1, and is strictly positive for t 6= 0, 1, which is a
contradiction to H(X |Y ) = 0.
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Fano’s inequality

If H(X |Y ) = 0, X is a function of Y . we can estimate X
from Y with zero probability of error.

When H(X |Y ) is not zero, our estimate X̂ may be wrong.
Define

Pe = Pr[X̂ 6= X ],

as the detection error probability, we want to connect Pe with
H(X |Y ).
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Fano’s inequality

Theorem 2.10.1

For any estimator X̂ such that X → Y → X̂ , with
Pe = Pr{X 6= X̂}, we have

H (Pe) + Pe log(|X | − 1) ≥ H(X |X̂ ) ≥ H(X |Y ).

This inequality can be weakened to

1 + Pe log(|X | − 1) ≥ H(X |Y )

or

Pe ≥
H(X |Y )− 1

log |X | − 1
.
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Fano’s inequality

Theorem 2.10.1

For any estimator X̂ such that X → Y → X̂ , with Pe = Pr{X 6= X̂}, we
have

H (Pe) + Pe log(|X | − 1) ≥ H(X |X̂ ) ≥ H(X |Y ).

Proof.
Define an error random variable as

E =

{
1 if X̂ 6= X ,

0 if X̂ = X .

Using the chain rule for entropies to expand H(E , X |X̂ ) in two different ways, we have

H(E , X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸
=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe )

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X|−1)

.

Since conditioning reduces entropy, H(E |X̂ ) ≤ H(E) = H(Pe ). Since E is a function of X and X̂ , the conditional

entropy H(E |X , X̂ ) is equal to 0. We now look at H(X |E , X̂ ). By the equation
H(X |Y ) =

∑
y p(y)H(X |Y = y), we have

H(X |E , X̂ ) =
∑
x̂∈X
{Pr[X̂ = x̂, E = 0]H(X |X̂ = x̂, E = 0)

+ Pr[X̂ = x̂, E = 1]H(X |X̂ = x̂, E = 1)}.
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Fano’s inequality

Theorem 2.10.1

For any estimator X̂ such that X → Y → X̂ , with Pe = Pr{X 6= X̂}, we
have

H (Pe) + Pe log(|X | − 1) ≥ H(X |X̂ ) ≥ H(X |Y ).

Proof.
H(E , X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸

=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe )

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X|−1)

.

H(X |E , X̂ ) =
∑
x̂∈X
{Pr[X̂ = x̂, E = 0]H(X |X̂ = x̂, E = 0)

+ Pr[X̂ = x̂, E = 1]H(X |X̂ = x̂, E = 1)}.

By definition of E , X is conditionally deterministic given X̂ = x̂ and E = 0, then H(X |X̂ = x̂ ; E = 0) = 0. If

X̂ = x̂ and E = 1, then X must take a value in the set {x ∈ X : x 6= xx̂} which contains |X| − 1 elements.

Then H(X |X̂ = x̂, E = 1) ≤ log(|X| − 1).

H(X |E , X̂ ) ≤
∑
x̂∈X

Pr[X̂ = x̂, E = 1] log(|X| − 1)

= Pr[E = 1] log(|X| − 1)

= Pe log(|X| − 1)
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Fano’s inequality

Theorem 2.10.1

For any estimator X̂ such that X → Y → X̂ , with Pe = Pr{X 6= X̂}, we
have

H (Pe) + Pe log(|X | − 1) ≥ H(X |X̂ ) ≥ H(X |Y ).

Proof.
H(E , X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸

=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(Pe )

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X|−1)

.

H(X |E , X̂ ) =
∑
x̂∈X
{Pr[X̂ = x̂, E = 0]H(X |X̂ = x̂, E = 0)

+ Pr[X̂ = x̂, E = 1]H(X |X̂ = x̂, E = 1)}.

H(X |E , X̂ ) ≤
∑
x̂∈X

Pr[X̂ = x̂, E = 1] log(|X| − 1)

= Pr[E = 1] log(|X| − 1)

= Pe log(|X| − 1)

By the data-processing inequality, we have I (X ; X̂ ) ≤ I (X ; Y ) and therefore H(X |X̂ ) ≥ H(X |Y ).
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Corollary

Corollary

For any two random variables X and Y , let p = Pr(X 6= Y ).

H(p) + p log(|X | − 1) ≥ H(X |Y ).

Proof.

Let X̂ = Y in Fano’s inequality.
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Fano’s inequality

Remark

Suppose that there is no knowledge of Y . Thus, X must be
guessed without any information. Let X ∈ {1, 2, . . . ,m} and
p1 ≥ p2 ≥ · · · ≥ pm. Then the best guess of X is X̂ = 1 and the
resulting probability of error is Pe = 1− p1. Fano’s inquality
becomes

H(Pe) + Pe log(m − 1) ≥ H(X ).

The probability mass function

(p1, p2, · · · , pm) =

(
1− Pe ,

Pe

m − 1
, · · · , Pe

m − 1

)
achieves this bound with equality.
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Applications of Fano’s inequality

Prove converse in many theorems (including channel capacity)

Compressed sensing signal model

y = Ax + w

where A ∈ RM×d : projection matrix for dimension reduction.
Signal x is sparse. Want to estimate x from y .
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Fano’s inequality

Lemma 2.10.1

If X and X ′ are i.i.d. with entropy H(X ),

Pr[X = X ′] ≥ 2−H(X ),

with equality iff X has a uniform distribution.

Corollary

Let X , X ′ be independent with X ∼ p(x), X ′ ∼ r(x), x , x ′ ∈ X .
Then

Pr
[
X = X ′

]
≥ 2−H(p)−D(p‖r)

Pr
[
X = X ′

]
≥ 2−H(r)−D(r‖p)

Please refer to P40 of the textbook for the proof.
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Stock Market

Initial investment Y0, daily return ratio ri , in t-th day, your
money is

Yt = Y0r1· . . . ·rt .

Now if returns ratio ri are i.i.d., with

ri =

{
4, w.p. 1/2
0, w.p. 1/2

So you think the expected return ratio is E [ri ] = 2.

And then

E [Yt ] = E [Y0r1· . . . ·rt ] = Y0(E [ri ])
t = Y02t???
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Stock Market

With Y0 = 1, actual return Yt goes like

1 4 16 0 0 · · ·

Why?

• The ’typical’ sequences will end up with 0 return.

• Occasionally, we got high return.

• The expected return is increasing.

• Expectation does not show the typical feature of this random

sequence. We can turn to typical set.
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Suppose that X1,X2, . . . ,Xn are n independent, identically

distributed (i.i.d.) random variables, then

1

n

n∑
i=1

Xi → E [X ] in probability,

i.e. for every number ε > 0,

lim
n→∞

Pr

[
|1
n

n∑
i=1

Xi − E [X ]| ≤ ε

]
= 1.
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Asymptotic Equipartition Property (AEP)

Definition (Convergence of random variables)

Given a sequence of random variables, X1,X2, . . . , we say that the

sequence X1,X2, . . . converges to a random variable X :

1 In probability if for every ε > 0, Pr[|Xn − X | ≥ ε]→ 0

2 In mean square if E [(Xn − X )2]→ 0

3 With probability 1 (a.k.a. almost surely) if

Pr[ lim
n→∞

Xn = X ] = 1
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Asymptotic Equipartition Property (AEP)

Theorem 3.1.1 (AEP)

If X1,X2, . . . are i.i.d. ∼ p(x), then

−1

n
log p(X1,X2, . . . ,Xn)→ H(X ) in probability.

Proof.

Since Xi are i.i.d., so are log p(Xi ). Hence, by the weak law of

large numbers,

−1

n
log p (X1,X2, . . . ,Xn) = −1

n

∑
i

log p (Xi )

→ −E [log p(X )] in probability

= H(X )
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Typical Set

Definition

A typical set A
(n)
ε contains all sequence realizations

(x1, x2, . . . , xn) ∈ X n with

2−n(H(X )+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X )−ε).
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Consequences of AEP

Theorem 3.1.2

If (x1, x2, . . . , xn) ∈ A
(n)
ε , then

H(X )− ε ≤ − 1
n log p(x1, x2, . . . , xn) ≤ H(X ) + ε.

Pr[A
(n)
ε ] > 1− ε for n sufficiently large.

|A(n)
ε | ≤ 2n(H(X )+ε), where |A| denotes the cardinality of the

set A.

|A(n)
ε | ≥ (1− ε)2n(H(X )−ε) for n sufficiently large.

Proof.

1. Immediate from the definition of A
(n)
ε .

The number of bits used to describe sequences in typical set is
approximately nH(X ).
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Consequences of AEP

Theorem 3.1.2

If (x1, x2, . . . , xn) ∈ A
(n)
ε , then

H(X )− ε ≤ − 1
n log p(x1, x2, . . . , xn) ≤ H(X ) + ε.

Pr[A
(n)
ε ] > 1− ε for n sufficiently large.

|A(n)
ε | ≤ 2n(H(X )+ε), where |A| denotes the cardinality of the

set A.

|A(n)
ε | ≥ (1− ε)2n(H(X )−ε) for n sufficiently large.

Proof.

2. By Theorem 3.1.1, the probability of the event (X1,X2, . . . ,Xn) ∈ A
(n)
ε tends to 1

as n→∞. Thus, for any δ > 0, there exists an n0 such that for all n ≥ n0, we have

Pr

{∣∣∣∣− 1

n
log p (X1,X2, . . . ,Xn)− H(X )

∣∣∣∣ < ε

}
> 1− δ.

Setting δ = ε, the conclusion follows.
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Consequences of AEP

Theorem 3.1.2

If (x1, x2, . . . , xn) ∈ A
(n)
ε , then

H(X )− ε ≤ − 1
n log p(x1, x2, . . . , xn) ≤ H(X ) + ε.

Pr[A
(n)
ε ] > 1− ε for n sufficiently large.

|A(n)
ε | ≤ 2n(H(X )+ε), where |A| denotes the cardinality of the

set A.

|A(n)
ε | ≥ (1− ε)2n(H(X )−ε) for n sufficiently large.

Proof.
3.

1 =
∑
x∈X n

p(x)≥
∑

x∈A(n)
ε

p(x)

≥
∑

x∈A(n)
ε

2−n(H(X )+ε)

= 2−n(H(X )+ε)
∣∣∣A(n)
ε

∣∣∣ .
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Consequences of AEP

Theorem 3.1.2

If (x1, x2, . . . , xn) ∈ A
(n)
ε , then

H(X )− ε ≤ − 1
n log p(x1, x2, . . . , xn) ≤ H(X ) + ε.

Pr[A
(n)
ε ] > 1− ε for n sufficiently large.

|A(n)
ε | ≤ 2n(H(X )+ε), where |A| denotes the cardinality of the

set A.

|A(n)
ε | ≥ (1− ε)2n(H(X )−ε) for n sufficiently large.

Proof.

4. For sufficiently large n, Pr[A
(n)
ε ] > 1− ε, so that

1− ε < Pr
[
A

(n)
ε

]
≤
∑

x∈A(n)
ε

2−n(H(X )−ε)

= 2−n(H(X )−ε)
∣∣∣A(n)
ε

∣∣∣ .
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Typical set diagram

This enables us to divide all sequences into two sets

Typical set: high probability to occur, sample entropy is close

to true entropy

so we will focus on analyzing sequences in typical set

Non-typical set: small probability, can ignore in general
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Asymptotic Equipartition Property (AEP)
Theorem 3.2.1

Let X1,X2, ...,Xn be i.i.d. random variables with distribution p(x),

and X n = X1X2...Xn. For arbitrarily small ε > 0, there exists a

code that maps every realization xn = x1x2...xn of X n into one

binary string, such that the mapping is one-to-one (and therefore

invertible) and

E

[
1

n
`(X n)

]
≤ H(X ) + ε

for a sufficiently large n.
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Asymptotic Equipartition Property (AEP)

Theorem 3.2.1

E

[
1

n
`(X n)

]
≤ H(X ) + ε.

for n sufficiently large.

Proof.

Description in typical set requires no more than n(H(X ) + ε) + 1

bits (correction of 1 bit because of integrality).

Description in atypical set A
(n)C
ε requires no more than

n log |X |+ 1 bits.

Add another bit to indicate whether in A
(n)
ε or not to get whole

description.
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Asymptotic Equipartition Property (AEP)

Theorem 3.2.1

E [
1

n
`(X n)] ≤ H(X ) + ε.

for n sufficiently large.

Proof.
Let `(xn) be the length of the binary description of xn. Then, ∀ε > 0, there exists n0
s.t. ∀n > n0,

E (` (X n)) =
∑
xn

p (xn) ` (xn)

=
∑

xn∈A(n)
ε

p (xn) ` (xn) +
∑

xn∈A(n)C
ε

p (xn) ` (xn)

≤
∑

xn≤A
(n)
ε

p (xn) (n(H + ε) + 2) +
∑

xn∈A(n)C
ε

p (xn) (n log |X |+ 2)

= Pr[A
(n)
ε ](n(H + ε) + 2) + Pr[A

(n)C

ε ](n log |X |+ 2)

≤n(H + ε) + εn(log |X |) + 2

=n
(
H + ε′

)
where ε′ = ε+ ε log |X |+ 2

n
can be made arbitrarily small by choosing n properly.
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Reading & Homework

Reading : 2.10 and whole Chapter 3

Homework : Problems 2.32, 3.8, 3.10
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