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Review Summary

Theorem (AEP)

‘‘Almost all events are almost equally surprising.” Specifically, if
X1,X2, . . . are i.i.d. ∼ p(x), then

−1

n
log p(X1,X2, . . . ,Xn)→ H(X )in probability.

Definition

The typical set A
(n)
ε is the set of sequences x1, x2, . . . , xn satisfying

2−n(H(X )+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X )−ε).
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Review Summary

Properties of the typical set

1. If (x1, x2, . . . , xn) ∈ A
(n)
ε , then

H(X )− ε ≤ − 1
n log p(x1, x2, . . . , xn) ≤ H(X ) + ε.

2. Pr[A
(n)
ε ] > 1− ε for n sufficiently large.

3. |A(n)
ε | ≤ 2n(H(X )+ε), where |A| denotes the cardinality of the set

A.

4. |A(n)
ε | ≥ (1− ε)2n(H(X )−ε) for n sufficiently large.

Theorem

Let X n be i.i.d. ∼ p(x). There exists a code that one-to-one maps
sequences xn of length n into binary strings with

E [
1

n
`(X n)] ≤ H(X ) + ε

for n sufficiently large.
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Source Coding

Which horse won in the horse racing?
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Source Coding

Which horse won in the horse racing?

H(X ) = −
∑

pi log pi = 2bits

Which code is better?
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Source Coding (Data Compression)

We interpret that H(X ) is the best achievable data
compression.

We want to develop practical lossless coding algorithms that
approach, or achieve the entropy limit H(X ).
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Terminology

Source alphabet X = {0, 1, 2, 3, 4, 5, 6, 7}.
Code alphabet D = {0, 1}.
Codeword, e.g., 010 for X = 2 in Code 1.

Codeword length, e.g., codeword length for Code 1 is 3.

Codebook: all the codewords.
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Source Coding

Notation (Alphabet Extension)

The set of all possible sequences based on a finite alphabet D is
denoted by D∗. E.g.,
D = {0, 1}� D∗ = {0, 1, 00, 01, 10, 11, 000, ...}.

Definition (Source Code)

Let X be the alphabet of a random variable X , and D be the
alphabet of code. A source code C for the random variable X is a
map

C : X → D∗

x 7→ C (x)

where C (x) is the codeword associated with x . Let `(x) denote the
length of C(x).
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Source Coding

Definition

The expected length L(X ) of a source code C for a random
variable X with probability mass function p(x) is

L(X ) = E`(X ) =
∑
x∈X

p(x)`(x).

L1(X ) = 3

L2(X ) = 2
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Source Coding Applications

Magnetic recording: cassette, hard drive ...

Speech compression

Compact disk (CD)

Image compression: JPEG
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Source Coding: Set of codes

For X = {1, 2, 3, 4} and D = {0, 1}, consider

Code efficiency = H(X )/E [`(X )]

Which code is best? Would we prefer CI or CII ?
Consider CI and decode string: 00001. It would come from 1, 2, 1, 2, 3 or

2, 1, 2, 1, 3 or 1, 1, 1, 1, 3, or etc.
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Source Coding: Set of codes

For X = {1, 2, 3, 4} and D = {0, 1}, consider

Code efficiency = H(X )/E [`(X )]

Which code is best? Would we prefer CI or CII ?

Consider CII and decode string: 0011. It could be either
1, 1, 2, 2 or 3, 4.
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Source Coding: Set of codes

For X = {1, 2, 3, 4} and D = {0, 1}, consider

Consider CIII . Can we decode 1100000000?

Yes. But if we only see a prefix, such as 11, we don’t know until we see more
bits to the end.

1100000000 = 3, 2, 2, 2, 2

11000000000 = 4, 2, 2, 2, 2
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Source Coding: Set of codes

For X = {1, 2, 3, 4} and D = {0, 1}, consider

Consider CIV . This code seems at least feasible (since
E [`] ≥ H). Decoding seems easy: (e.g.,
111110100 = 111, 110, 10, 0 = 4, 3, 2, 1).
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Source Coding: Code types

Definition (Nonsingular Code)

A code C is called nonsingular if every realization of X maps onto
a difference codeword in D∗, i.e.,

x 6= x ′ ⇒ C (x) 6= C (x ′).

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING October 13, 2020 15 / 34



Source Coding: Code types

Definition (Nonsingular Code)

A code C is called nonsingular if every element of X maps onto a
difference string in D∗, i.e.,

x 6= x ′ ⇒ C (x) 6= C (x ′).

CI is singular.
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Source Coding: Code types

Definition (Code Extension)

The extension of a code C : X → D∗ is defined by

C (x1x2 · · · xn) = C (x1)C (x2) · · ·C (xn).

Definition (Unique Decodable Code)

A code is called uniquely decodable if its extension is nonsingular.

x1x2 . . . xm 6= x ′1x
′
2 . . . x

′
n ⇒ C (x1x2 . . . xm) 6= C

(
x ′1x
′
2 . . . x

′
n

)
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Source Coding: Code types

Definition (Unique Decodable Code)

A code is called uniquely decodable if its extension is nonsingular.

C ∗II is singular. (C (1, 1) = C (3) = 00)

CI is singular.
CII is NOT u.d..
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Source Coding: Code types

Definition (Unique Decodable Code)

A code is called uniquely decodable if its extension is nonsingular.

CIII is uniquely decodable.

CI is singular.
CII is NOT u.d..
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Source Coding: Code types

Definition (Unique Decodable Code)

A code is called uniquely decodable if its extension is nonsingular.

1100000000 = 3, 2, 2, 2, 2

11000000000 = 4, 2, 2, 2, 2
To know the source, we
have to wait until the end!

CI is singular.
CII is NOT u.d..
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Source Coding: Code types

Definition (Prefix Code)

A code C is called a prefix code (a.k.a. instantaneous) iff no
codeword of C is a prefix of any other codeword of C .

CI is singular.
CII is NOT u.d..
CIII is NOT prefix.
CIV is prefix.
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Source Coding: Code types

For X = {1, 2, 3, 4} and binary code, consider

CI is singular.

CII is non-singular, but not uniquely decodable.

CIII is non-singular, uniquely decodable, but NOT prefix.

CIV is non-singular, uniquely decodable, and prefix.
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Source Coding: Classes of codes

Goal: to find a prefix code with minimum expected length.
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Kraft Inequality

Theorem 5.2.1 (Kraft Inequality)

For any prefix code over an alphabet of size D, the codeword
lengths `1, `2, . . . , `m must satisfy the inequality∑

i

D−`i ≤ 1.

Conversely, given a set of codeword lengths that satisfy this
inequality, there exists a prefix code with these codeword lengths.
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Kraft Inequality

Proof Idea. (A small example) To prove: A prefix code with
lengths `1, `2, . . . , `m, the inequality∑

i

D−`i ≤ 1 holds.

∑
i

2−`i ≤ 1 ⇐
∑
i

2`max−`i ≤ 2`max
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Kraft Inequality

Proof. (in general)

Represent the set of prefix codes on a D-ary tree:

Codewords correspond to leaves

Path from root to each leaf
determines a codeword

Prefix condition: won’t get to a
codeword until we get to a leaf
(no descendants of codewords
are codewords)
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Kraft Inequality

Proof. (in general)

`max = maxi (`i ) is the length of the longest codeword.

We can expand the full-tree down to depth `max:

The nodes at the level `max are either

1 codewords

2 descendants of codewords

3 neither

Consider a codeword i at depth `i in tree

There are D`max−`i descendants in the tree at depth `max

Descendants of code i are disjoint from decedents of code j
(prefix free condition)
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Kraft Inequality

Proof. (in general)

All the above implies:∑
i

D`max−`i ≤ D`max ⇒
∑
i

D−`i ≤ 1

Conversely: given codewords lengths `1, `2, . . . , `m satisfying
Kraft inequality, try to construct a prefix code.
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Kraft Inequality

Proof. (in general)

Conversely: given codewords lengths `1, `2, . . . , `m satisfying
Kraft inequality, try to construct a prefix code.
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Kraft Inequality

Proof. (in general)

Conversely: given codewords lengths `1, `2, . . . , `m satisfying
Kraft inequality, try to construct a prefix code.

Left as an Exercise.
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Extended Kraft Inequality

Theorem 5.2.2 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of
codewords, i.e., the codeword lengths satisfy the extended Kraft
inequality,

∞∑
i=1

D−`i ≤ 1

Conversely, given any `1, `2, . . . satisfying the extended Kraft
inequality, we can construct a prefix code with these codeword
lengths.
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Extended Kraft Inequality

Theorem 5.2.2 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of
codewords.

Proof.

Consider the ith codeword y1y2 · · · y`i . Let 0.y1y2 · · · y`i be the real
number given by the D-ary expansion

0.y1y2 · · · y`i =

`i∑
j=1

yjD
−j ,

which corresponds to the interval

[0.y1y2 · · · y`i , 0.y1y2 · · · y`i +
1

D`i
).
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Extended Kraft Inequality

Theorem 5.2.2 (Extended Kraft Inequality)

Kraft inequality holds also for all countably infinite set of
codewords.

Proof. (cont.)

By the prefix condition, these intervals are disjoint in the unit
interval [0, 1]. Thus, the sum of their lengths is ≤ 1. This proves
that

∞∑
i=1

D−`i ≤ 1.

For converse, reorder indices in increasing order and assign
intervals as we walk along the unit interval.
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Reading & Homework

Reading : 5.1, 5.2

Homework : Problems 5.1, 5.3
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