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Review Summary

Classes of codes

Prefix codes ⇒ Uniquely decodable codes ⇒ Nonsingular
codes

Kraft inequality

Prefix codes ⇔
∑

D−`i ≤ 1.

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING October 20, 2020 2 / 31



Outline

Kraft inequality for uniquely decodable code

Uniquely decodable code does NOT provide more choices
than prefix code

Bounds on optimal expected length

Entropy length is achievable when jointly encoding a random
sequence.

Huffman Code: algorithm to find the optimal code with
shortest expected length
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Kraft Inequaltiy for Uniquely Decodable Codes

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must
satisfy the Kraft inequality∑

D−`i ≤ 1.

Conversely, given a set of codeword lengths that satisfy this
inequality, it is possible to construct a uniquely decodable code
with these codeword lengths.

Proof.

Consider C k , the k-th extension of the code by k repetitions. Let
the codeword lengths of the symbols x ∈ X be `(x). For the k-th
extension code, we have

`(x1, x2, . . . , xk) =
k∑
i

`(xi ).
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Kraft Inequaltiy for Uniquely Decodable Codes

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must
satisfy the Kraft inequality∑

D−`i ≤ 1.

Proof. (cont.)

Consider(∑
x∈X

D−`(x)

)k

=
∑
x1∈X

∑
x2∈X

· · ·
∑
xk∈X

D−`(x1)D−`(x2) · · ·D−`(xk )

=
∑

x1,x2,···xk∈X k

D−`(x1)D−`(x2) · · ·D−`(xk )

=
∑

xk∈X k

D−`(x
k )
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Kraft Inequaltiy for Uniquely Decodable Codes

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must
satisfy the Kraft inequality∑

D−`i ≤ 1.

Proof. (cont.)

Let `max be the maximum codeword length and a(m) is the
number of source sequences xk mapping into codewords of length
m. Unique decodability implies that a(m) ≤ Dm. We have(∑

x∈X
D−`(x)

)k
=
∑

xk∈X k

D−`(x
k ) =

k`max∑
m=1

a(m)D−m

≤
k`max∑
m=1

DmD−m

= k`max
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Kraft Inequaltiy for Uniquely Decodable Codes

Theorem 5.5.1 (McMillan)

The codeword lengths of any uniquely decodable D-ary code must
satisfy the Kraft inequality∑

D−`i ≤ 1.

Proof. (cont.) (∑
x∈X

D−`(x)

)k

≤ k`max.

Hence, ∑
j

D−`j ≤ (k`max)1/k

holds for all k . Since the RHS→ 1 as k →∞, we prove the Kraft
inequality. For the converse part, we can construct a prefix code as
in Theorem 5.2.1, which is also uniquely decodable.
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Optimal Codes

Problem To find the set of lengths `1, `2, . . . , `m satisfying the
Kraft inequality and whose expected length L =

∑
pi`i is

minimized.

Optimization:

minimize L =
∑

pi`i

subject to
∑

D−`i ≤ 1 and `i ’s are integers.
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Optimal Codes

Theorem 5.3.1

The expected length L of any prefix D-ary code for a random
variable X is no less than HD(X ), i.e.,

L ≥ HD(X ),

with equality iff D−`i = pi .

Proof.

L− HD(X ) =
∑

pi`i −
∑

pi logD
1

pi

= −
∑

pi logD D−`i +
∑

pi logD pi

=
∑

pi logD
pi
ri
− logD c

= D(p‖r) + logD
1

c
≥0

where ri = D−`i/
∑

j D
`j and c =

∑
D−`i ≤ 1.

“=” holds if c = 1
and ri = pi .
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Optimal Codes

Theorem 5.3.1

The expected length L of any prefix D-ary code for a random
variable X is no less than HD(X ), i.e.,

L ≥ HD(X ),

with equality iff D−`i = pi .

Definition

A probability distribution is called D-adic if each of the
probabilities is equal to D−n for some n. Thus, we have equality in
the theorem iff the distribution of X is D-adic.

Remark

HD(X ) is a lower bound on the optimal code length. The equality
holds iff p is D-adic.
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Bound on the Optimal Code Length

Theorem 5.4.1 (Shannon Codes)

Let `∗1, `
∗
2, . . . , `

∗
m be optimal codeword lengths for a source

distribution p and a D-ary alphabet, and let L∗ be the associated
expected length of an optimal code (L∗ =

∑
pi`
∗
i ). Then

HD(X ) ≤ L∗ < HD(X ) + 1.

Proof.

Take `i = d− logD pie. Since∑
i∈X

D−`i ≤
∑

pi = 1,

these lengths satisfy Kraft inequality and we can create a prefix
code. Thus, L∗ ≤

∑
pid− logD pie

<
∑

pi (− logD pi + 1)

= HD(X ) + 1.
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Bound on the Optimal Code Length

Theorem 5.4.2

Consider a system in which we send a sequence of n symbols from
X . The symbols are assumed to be i.i.d. according to p(x). The
minimum expected codeword length per symbol satisfies

H(X1,X2, . . . ,Xn)

n
≤ L∗n <

H(X1,X2, . . . ,Xn)

n
+

1

n
.

Proof.

First,

Ln =
1

n

∑
p(x1, x2, . . . , xn)`(x1, x2, . . . , xn) =

1

n
E [`(X1,X2, . . . ,Xn)]

We also have

H(X1,X2, . . . ,Xn) ≤ E [`(X1,X2, . . . ,Xn)] < H(X1,X2, . . . ,Xn) + 1.

Since X1,X2, . . . ,Xn are i.i.d., H(X1,X2, . . . ,Xn) = nH(X ).
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Huffman Codes

Problem 5.1

Given source symbols and their probabilities of occurence, how to
design an optimal source code (prefix code and the shortest on
average)?

Huffman Codes

Step 1. Merge the D symbols with the smallest probabilities, and
generate one new symbol whose probability is the
summation of the D smallest probabilities.

Step 2. Assign the D corresponding symbols with digits
0, 1, . . . ,D − 1, then go back to Step 1.

Repeat the above process until D probabilities are merged into
probability 1.

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING October 20, 2020 13 / 31



Huffman Codes: A few examples

Example 1

Reconstruct the tree
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Huffman Codes: A few examples

Example 1

Validations:

`(1) = `(2) = `(3) = 2, `(4) = `(5) = 3

 L =
∑

`(x)p(x) = 2.3bits

H2(X ) = −
∑

p(x) log2 p(x) = 2.29bits

L ≥ H2(X )
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Huffman Codes: A few examples

Example 2

D = {0, 1, 2}

At one time, we merge D symbols, and at
each stage of the reduction, the number of
symbols is reduced by D − 1. We want the
total # of symbols to be 1 + k(D − 1). If not,
we add dummy symbols with probability 0.
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Huffman Codes: A few examples

Example 2 (D ≥ 3)

Validations:
L =

∑
`(x)p(x) = 1.7 ternary digits

H3(X ) = −
∑

p(x) log3 p(x) ≈ 1.55 ternary digits
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Optimality of Huffman Codes

Lemma 5.8.1

For any distribution, the optimal prefix codes (with minimum
expected length) should satisfy the following properties:

1 If pj > pk , then `j ≤ `k .

2 The two longest codewords have the same length.

3 There exists an optimal prefix code, such that two of the
longest codewords differ only in the last bit and correspond to
the two least likely symbols.
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Optimality of Huffman Codes

1. If pj > pk , then `j ≤ `k .

Proof.

Suppose that Cm is an optimal code. Consider C ′m, with the
codewords j and k of Cm interchanged. Then

L
(
C ′m
)
− L (Cm)︸ ︷︷ ︸
≥0

=
∑

pi`
′
i −
∑

pi`i

= pj`k + pk`j − pj`j − pk`k

= (pj − pk)︸ ︷︷ ︸
>0

(`k − `j)

Thus, we must have `k ≥ `j .
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Optimality of Huffman Codes

2. The two longest codewords have the same length.

Proof.

If the two longest codewords are NOT of the same length, one can
delete the last bit of the longer one, preserving the prefix property
and achieving lower expected codeword length, contradiction! By
property 1, the longest codewords must belong to the least
probable source symbols.
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Optimality of Huffman Codes

3. There exists an optimal prefix code, such that two of the
longest codewords differ only in the last bit and correspond to
the two least likely symbols.

Proof.

If there is a maximal-length codeword without a sibling, we can
delete the last bit of the codeword and still preserve the prefix
property. This reduces the average codeword length and
contradicts the optimality of the code. Hence, every
maximum-length codeword in any optimal code has a sibling. Now
we can exchange the longest codewords s.t. the two
lowest-probability source symbols are associated with two siblings
on the tree, without changing the expected length.
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Optimality of Huffman Codes

Lemma 5.8.1

For any distribution, the optimal prefix codes (with minimum
expected length) should satisfy the following properties:

1 If pj > pk , then `j ≤ `k .

2 The two longest codewords have the same length.

3 There exists an optimal prefix code, such that two of the
longest codewords differ only in the last bit and correspond to
the two least likely symbols.

⇒ If p1 ≥ p2 ≥ · · · pm, then there exists an optimal
code with `1 ≤ `2 ≤ · · · `m−1 = `m, and codewords
C (xm−1) and C (xm) differ only in the last bit.
(canonical codes)
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Optimality of Huffman Codes

We prove the optimality of Huffman codes by induction.
Assume binary code in the proof.
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Optimality of Huffman Codes

Proof.

For p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction p′ = (p1, p2, . . . , pm−1+pm) over an alphabet
size of m − 1. Let C ∗m−1(P′) be an optimal Huffman code for p′,
and let C ∗m(p) be the canonical optimal code for p.

Key idea.

expand C ∗m−1 to Cm(p)⇒ L(Cm) = L(C ∗m)
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Optimality of Huffman Codes

Proof.

For p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction p′ = (p1, p2, . . . , pm−1+pm) over an alphabet
size of m − 1. Let C ∗m−1(P′) be an optimal Huffman code for p′,
and let C ∗m(p) be the canonical optimal code for p.
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Optimality of Huffman Codes

Proof.

For p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction p′ = (p1, p2, . . . , pm−1+pm) over an alphabet
size of m − 1. Let C ∗m−1(P′) be an optimal Huffman code for p′,
and let C ∗m(p) be the canonical optimal code for p.
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Optimality of Huffman Codes

Proof.

For p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction p′ = (p1, p2, . . . , pm−1+pm) over an alphabet
size of m − 1. Let C ∗m−1(P′) be an optimal Huffman code for p′,
and let C ∗m(p) be the canonical optimal code for p.

expand C ∗m−1(p′) to Cm(p)

L(p) = L∗(p′) + pm−1 + pm

condense C ∗m(p) to Cm−1(p′)

L∗(p) = L(p′) + pm−1 + pm
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Optimality of Huffman Codes

Proof.

For p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction p′ = (p1, p2, . . . , pm−1+pm) over an alphabet
size of m − 1. Let C ∗m−1(P′) be an optimal Huffman code for p′,
and let C ∗m(p) be the canonical optimal code for p.

L(p) = L∗
(
p′
)

+ pm−1 + pm

L∗(p) = L
(
p′
)

+ pm−1 + pm

(L
(
p′
)
− L∗

(
p′
)︸ ︷︷ ︸

≥0

) + (L(p)− L∗(p)︸ ︷︷ ︸
≥0

) = 0
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Optimality of Huffman Codes

Proof.

For p = (p1, p2, . . . , pm) with p1 ≥ p2 ≥ · · · ≥ pm, we define the
Huffman reduction p′ = (p1, p2, . . . , pm−1+pm) over an alphabet
size of m − 1. Let C ∗m−1(P′) be an optimal Huffman code for p′,
and let C ∗m(p) be the canonical optimal code for p.

Thus, L(p) = L∗(p). Minimizing the expected length L(Cm) is
equivalent to minimizing L(Cm−1). The problem is reduced to one
with m − 1 symbols and probability masses
(p1, p2, . . . , pm−1 + pm). Proceeding this way, we finally reduce the
problem to two symbols, in which case the optimal code is obvious.
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Optimality of Huffman Codes

Theorem 5.8.1

Huffman coding is optimal, that is, if C ∗ is a Huffman code and C ′

is any other uniquely decodable code, L(C ∗) ≤ L(C ′).

Remark

Huffman coding is a greedy algorithm in which it merges the two
least likely symbols at each step.

LOCAL OPT → GLOBAL OPT
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Reading & Homework

Reading : 5.3 - 5.7

Homework : Problems 5.4, 5.6
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