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Review Summary

Entropy rate. Two definitions of entropy rate for a stochastic
process are

H(X ) = lim
n→∞

1

n
H(X1, X2, . . . , Xn),

H
′
(X ) = lim

n→∞
H(Xn|Xn−1, Xn−2 . . . , X1).

For a stationary stochastic process, H(X ) = H
′
(X ).

Entropy rate of a stationary Markov chain.

H(X ) = −
∑
i,j

µiPij logPij .
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Outline

Channel model: conditional distribution

Channel capacity: defined in a pure way of information theory, not
operational

Channel coding & data rate: operational indicator of channel
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Communication System Model

Xn = [X1, X2, . . . , Xn]

Y n = [Y1, Y2, . . . , Yn]

Channel p(yn|xn): probability of observing yn given input input
sequence xn
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Discrete memoryless channel (DMC)

Definition

A discrete channel consists of an input alphabet X and output alphabet Y
and a probability transition matrix p(yn|xn) that expresses the probability
of observing the output sequence yn given that we send the sequence xn.

Definition

The channel is called memoryless if p(yn|xn) =
∏n
i=1 p(yi|xi).
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Communication System Model

Xn = [X1, X2, . . . , Xn] ∈ X n, Y n = [Y1, Y2, . . . , Yn] ∈ Yn
Channel p(yn|xn): probability of observing yn given input symbol xn

Memoryless: p(yn|xn) =
∏n
i=1 p(yi|xi)

Messages are mapped into some sequence of the channel symbols.
Output sequence is random but has a distribution that depends on
the input sequences. Each possible input sequence may induce several
possbile outputs, and hence inputs are confusable. Can we choose a
non-confusable subset of input sequences?
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Duality

Data compression: we remove all the redundancy in the data to form
the most compressed version possible.

Data transmission: we add redundancy in a controlled manner to
combat errors in the channel.
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“Survivor”

You were deserted on a small island. You met a native and asked
about the weather.

True weather is a random variable X

X =

{
rain w.p. α,

sunny w.p. 1− α,

Native knows tomorrow’s weather perfectly, but only tells truth with
probability 1− p.

Native’s answer is a random variable Y ∈ {rain, sunny}.
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“Survivor”

How informative is the native’s answer?

Dr. Rui Wang (EEE) INFORMATION THEORY & CODING November 2, 2020 9 / 20



What is I(X;Y )?

I(X;Y ) = H(X)−H(X|Y )

H(X) = H(α) = −α logα− (1− α) log(1− α)
H(X|Y ) = H(X|Y = rain)p(rain) +H(X|Y = sunny)p(sunny)

H(X|Y = rain) is equal to
−
∑

i∈{rain,sunny} p(X = i|Y = rain) log p(X = i|Y = rain). Note that

p(X = rain|Y = rain) = p(X=rain|Y=rain)p(X=rain)
p(Y=rain) = (1−p)α

(1−p)α+p(1−α)

Thus, H(X|Y ) = αH
(

(1−p)α
(1−p)α+p(1−α)

)
+ (1− α)H

(
pα

pα+(1−p)(1−α)

)
I(X;Y ) = H(α)− αH

(
(1−p)α

(1−p)α+p(1−α)

)
− (1− α)H

(
pα

pα+(1−p)(1−α)

)
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Special Cases

I(X;Y ) = H(α)− αH
(

(1−p)α
(1−p)α+p(1−α)

)
− (1− α)H

(
pα

pα+(1−p)(1−α)

)
Always telling the truth: p = 0

I(X;Y ) = H(α)− αH(1)− (1− α)H(0) = H(α) ≤ 1 bit

Telling truth half of the time: p = 1/2

I(X;Y ) = H(α)− αH(α)− (1− α)H(α) = 0 bit

Fix p, maximize with respect to α, maximum achieved when α = 1/2

max
α

I(X;Y ) = H(1/2)− 1

2
H(1− p)− 1

2
H(p) = 1−H(P )
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“Information” Channel Capacity

Definition (“Information” Channel Capacity)

C = max
p(x)

I(X;Y )
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Examples

Binary noiseless channel

C = max I(X;Y ) = log 2 = 1 bits
(

with p(x) = (
1

2
,
1

2
)
)
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Examples

Noisy channel with nonoverlapping outputs

C = max I(X;Y ) = log 2 = 1 bits
(

with p(x) = (
1

2
,
1

2
)
)
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Examples

Noisy typewriter

C = max I(X;Y ) = log
26

2
= log 13 bits

(
with p(x) uniformly distributed

)
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Examples

Binary symmetric channel

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−
∑

x∈{0,1}

p(x)H(Y |X = x)

= H(Y )−
∑

x∈{0,1}

p(x)H(p) = H(Y )−H(p) ≤ 1−H(p)

C = max I(X;Y ) = I −H(p) bits
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Examples

Binary erasure channel

C = max
p(x)

I(X;Y )

= max
p(x)

(
H(Y )−H(Y |X)

)
= max

p(x)
H(Y )−H(α)

Let Pr[X = 1] = π, then

H(Y ) = H
(
(1− π)(1− α), α, π(1− α)

)
= H(α) + (1− α)H(π)

Thus, C = maxπ(1− α)H(π) = 1− α (with π = 1
2)
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Symmetric channel

p(y|x) =

 0.3 0.2 0.5
0.5 0.3 0.2
0.2 0.5 0.3

 .
All the rows of the transition matrix are permutations of each other and so
are the columns. Let r be a row of the transition matrix.

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(r) ≤ log |Y| −H(r)

with equality if Y is uniformly distributed. If p(x) = 1
|X | , Y is also

uniformly distributed:

p(y) =
∑
x∈X

p(y|x)p(x) = 1

|X |
∑
x∈X

p(y|x) = c

|X |
=

1

|Y|
,

where c is the sum of the entries in one column.
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Fundamental question

How fast can we transmit information over a channel?

Suppose a source sends r messages per second, and the entropy of a
message is H bits per message, information rate is R = rH
bits/second.

Intuition: as R increases, error will increase.

Surprisingly, Shannon showed error can approach to zero, as long as

R < C
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Reading & Homework

Reading: Chapter 7: 7.1-7.5

Homework: Problems 7.2, 7.4, 7.7, 7.8, 7.12
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